
 iBantumi David Piggott

David Piggott - iBantumi

2

Contents
Project Outline 3 Mistakes in Artwork Set 0.2 - Player Two Upper 90

Initialisation Time Plan 4 PCB Pictures 91

Research - Existing Products 5 Pit Boards Smoke Test 94

Bantumi (Board Diagram) 6 Schematic & Artwork Development 108

Bantumi (Objective, Rules and Terminology) 7 Production Time Plan 112

Task Analysis 8 Proof of Concept Program 114

System Ideas 13 Component Research 123

Case Ideas 18 Case Development 127

Specification 24 Case Production 145

Development Time Plan 26 Case Pictures 150

Component Research 27 Time Usage & Unfortunate Circumstances 154

LED Control Protocol Ideas 43 Component Usage 158

LED Register Code Development - 0.1 44 Program Development 160

Problematic Programming 57 Testing 175

Development Dependencies 59 Evaluation 176

Schematic & Artwork Development 60 Industrial Practices, Systems & Control 186

Case Plan - Component Locations Draft 70 Bibliography & Conclusion 189

Schematic & Artwork Development 71 Appendix A - Rough notes 190

Pit Numbers, LED Mappings & Switch Array Addresses 79 Appendix B - Bao Idea & Redundant development prep. 233

LED Register Code Development - 0.2 80 Appendix C - Datasheets & Project files 240

David Piggott - iBantumi

3

During the summer holidays I spent a month in Malawi on expedition with Team Chal-
lenge. While out there I became aware of a popular African board game. The game com-
mon in the areas we visited is known as Bao, but I was later to discover that it is one type
of a family of games known collectively as mancala. Figure 1.0 is a picture of the Bao board
I purchased at Chitimba beach camp on Lake Malawi.

I had decided that I would make an electronic version of Bao several months before the
time came to start work on module SCT5, and had already thought quite a bit about how it
would work. In doing so I realised that no matter how much I optimised the design, it
would still be very complicated to develop and produce, so much so that I decided it not
worth the risk, given the time constraints.

Not wanting to change the project to something entirely different, I decided to
try and make an electronic version of one of the more simple mancala games,
and recalled playing a game called ’Bantumi’ on my Nokia 5510 some years
ago. Unsure of the rules, I refreshed my memory by finding a PC software ver-
sion, pictured in figure 1.1.

A description of the objectives and rules of Bao, along with all the ideas I had
come up with, is included in appendix A. Included in the main documentation is
only that which is relevant to the game of Bantumi - which I am going to make
an electronic version of.

Project Outline

Figure 1.0

Figure 1.1

David Piggott - iBantumi

4

Initialisation Time Plan

ID Task Name Start Finish Duration

Nov 2007 Dec 2007 Jan 2008 Feb 2008 Mar 2008

4/11 11/11 18/11 25/11 2/12 9/12 16/12 23/12 30/12 6/1 13/1 20/1 27/1 3/2 10/2 17/2 24/2 2/3 9/3 16/3

4

5

6

7

8

9

10

11

12

13

14

1d01/11/200701/11/2007Introductory documentation

2d03/11/200702/11/2007Explanation of idea

2d04/11/200703/11/2007Analysis of idea

3d09/11/200707/11/2007Task Analysis

31d01/12/200701/11/2007Research

1d09/11/200709/11/2007Specification

1d10/11/200710/11/2007Development time plan

78d27/01/200811/11/2007Development

1d28/01/200828/01/2008Production time plan

44d12/03/200829/01/2008Production

7d19/03/200813/03/2008Completion of documentation

Apr 2008

23/3 30/3 6/4

23d06/01/200815/12/2007Christmas Holidays

2 9d17/02/200809/02/2008Spring Half Term

1

3 18d06/04/200820/03/2008Easter Holidays

Figure 2.0 - Initialisation time plan

David Piggott - iBantumi

5

Research - Existing Products

Figure 3.0 - Playing Bao

The Mancala games available fall into two categories:
 Software games
 Wooden board games

The software games are typically free downloads for PCs, though
there are also versions for embedded devices such as some older
Nokia mobile phones. A phone I once had, the Nokia 5510 had a
mancala game known as Bantumi built into it.

The wooden board games are not easily available in Europe and
are most easily found in Africa. The Bao board I purchased was
1400 Kwacha (approximately $10/£5).

The available boards vary significantly in size and type. There are
many different versions of the rules and therefore different
boards to accommodate this. Different sizes are available depend-
ing on where the board will be used.

See figure 3.0 for an example of this; the big board being played
on belonged to the beach resort we were staying at and therefore
didn't need to be portable, whereas the board I bought is aimed at
tourists and so was smaller to make it easier to bring back.

It is my hope that the board I produce will be smaller still than the
portable board I bought.

David Piggott - iBantumi

6

Bantumi (Board Diagram)

Player One’s Row

Player Two’s Row

Figure 4.0 - Bantumi (Board Diagram)

Player

Two’s

Mancala

Player

One’s

Mancala

David Piggott - iBantumi

7

Bantumi (Objective, Rules and Terminology)

Terms
Pits - The hollows in the board in which seeds are placed (there are six per player in Bantumi).
Seeds - The pieces that the game are played with. In Bantumi, the starting number varies, typically two or four.
Rows - A row of pits. In Bantumi there is only one row per player.
Mancala - The pit to the right of the players row, in which they must accumulate more seeds than their opponent does in theirs.

Objective
The game ends when one player can no longer make any moves (i.e. their row is empty), and the winner is the player with the most seeds in
their mancala.

Rules
A players turn may consist of one or more moves. The following rules describe how to move the seeds:
1. Play takes place anticlockwise only
2. A turn begins when the player chooses a pit to initialise play with. The seeds of that pit are taken into the hand and sown along the

board, moving towards their mancala (to the right of their row), depositing one seed in each pit passed until the hand is empty.
3. If there are still seeds in the hand after the mancala has been reached and one deposited in it, sowing continues along the opponents

row - this time moving right to left (sowing is done in an anticlockwise circle, so if the opponents mancala is reached, play continues on
the players own row as before, until the hand is empty).

4. If the last seed of the hand ends up in the player’s own mancala, they make another move.
5. If the last seed of the hand ends up in one of the player’s own pits, and that pit is empty, the seeds from the opposite pit are taken and

moved into the mancala, along with the seed that was sown in the empty pit.

David Piggott - iBantumi

8

Task Analysis

 There are several advantages offered by choosing Bantumi instead of Bao as the mancala variant I base my game on:
 Slightly simpler rules enable new players to learn the game more quickly
 Smaller board and fewer seeds mean less LEDs are required on the board;

 Makes production cheaper and quicker than with more LEDs
 Allows the board to be smaller and therefore more portable
 Allows the possibility of reverting to decimal output instead of binary and therefore making it easier to play

 Shorter typical game times (depending on number of starting seeds and the amount of pits) make the game more practical for travel
use, as they can be over in a matter of minutes as opposed to hours for Bao.

Typically, the setup for a Bantumi game is six pits per player, with four seeds in each pit at the start of the game. This is a total of 2 x 6 x 4 = 48
seeds in play. Without doing a complex analysis of the game, it is fair to say then that each pit in iBantumi should be able to hold 48 seeds (i.e.
48 LEDs per pit). In reality, 48 will never be reached, but the value can get quite high and so it makes sense to provision for this.

Assuming 48 LEDs per pit, and 12 pits + 2 mancala, this is 14 x 48 = 672 LEDs!

If I were to modify the rules so that the game starts with two seeds per pit, this is 2 x 6 x 2 = 24 seeds in play. This is 14 x 24 = 336 LEDs!

While working on ideas for a hybrid game of Bao and Bantumi (Bao rules but with only one row per player), I came up with an idea for control-
ling 512 LEDs (the number required by this hybrid game) in a similar fashion to the way the DMX stage lighting control protocol works. Groups
of 32 LEDs would be controlled by single PICmicros (40 pin devices, having 4 ports available - 8 LEDs per port). This would require a total of 16
PICmicros (assuming I don’t use some form of array addressing - which is entirely possible).

Not only does changing the number of starting seeds in each pit alter the number of LEDs required, but it also changes the typical game length
- as the number of starting seeds per pit increases, so does the average game time.

A bulleted list of questions follows overleaf.

David Piggott - iBantumi

9

Task Analysis

 How many pits will each player have?
 The standard game consists of six pits per player, and I see no reason to alter this as it is tried and tested, resulting in good game

play.
 How many seeds will each pit start with?

 The choice is between two and four seeds per pit. The benefits and drawbacks of the two are summarised as follows:
 Two starting seeds require 336 LEDs
 With the 24 LEDs per pit required if using two starting seeds, the most obvious arrangement is a 4 by 6 array
 Two starting seeds results in shorter average play times
 Four starting seeds require 672 LEDs
 With the 48 LEDs per pit required if using four starting seeds, the most obvious arrangement is an 8 by 6 array
 Four starting seeds results in longer average play times

 Whichever option I choose, I will still be doing the same development work; the only difference being the quantity of production
work (i.e. soldering up more LEDs and PICmicro controllers). Therefore, because this project is a prototype it makes sense to re-
duce the production time slightly in order to allow more development time. If, when the prototype is complete, it transpires that
having four starting seeds per pit results in better gameplay, it wouldn’t be that much more work to alter the design to provide
this, as my expectations are that the majority of the work will be programming. For these reasons, there will be two starting seeds
per pit in this prototype.

 What will the input hardware consist of?
 Tactile push switches of some sort will be used, one per pit, pressed by the player to indicate they want to initiate their turn by

moving those seeds. This is an area I will need to do further research in, to find the switches that have the best ergonomics at a
reasonable price.

 How many input switches are needed?
 With six pits per player and two players, each pit having one switch, 12 (2 x 6) input switches will be needed.

 How will the input switches be read?
 With only twelve switches required, it wouldn't be out of the question to allocate one pin on the main controlling PICmicro per

switch and do it that way. However, I would quite like to gain some experience in keyboard array scanning techniques. For this
reason the input switches will be connected in an array and scanned. With twelve switches, the optimal dimensions are 3 x 4, re-

David Piggott - iBantumi

10

Task Analysis

 quiring a total of 7 pins - just less than one port on a PICmicro. Adding another pin (i.e one port, and a 4 x 4 array) allows for 16
switches to be scanned. This would allow me to add another four switches for auxiliary control such as saving/loading games etc.,
all while using only one port; this would negate the need for a separate PICmicro keyboard driver, as I thought I would need when
developing my Bao board ideas (which would require 64 switches)

 What will the display hardware consist of?
 LEDs, one per seed per pit.
 LCD(s) for menu navigation.

 How many LEDs are required?
 This has been determined by how many starting seeds there will be per pit, and how many pits per player. 336 LEDs will be re-

quired.
 How will the LEDs be controlled?

 Several options immediately come to mind, with varying feasibility: array addressing, regional PICmicro registers, and a hybrid of
the two where registers are used, and in turn drive the LEDs by array addressing. I will discuss and explain these options in more
detail in the system ideas and development sections, as I am uncertain which is most appropriate. I can rule out pure array ad-
dressing however, because with 336 LEDs, it would be impossible to provide them with sufficient current for visibility.

 Will there be the facility to save games and resume at a later date?
 This would be a very useful feature and shouldn’t be too difficult to implement. Getting the core gameplay implemented has to

take priority over this and so I will mark this point as optional, and consider it a bonus if I have time to implement it.
 Will the device only be for two human players, or will I develop some form of AI so that people can play against the computer?

 As with the save and resume feature, core gamplay has to take priority over this. However, developing an AI ‘player’ is likely to be
the most complex development task, should I have time at the end to try doing so. I will consider it a bonus if I have time to imple-
ment this.

 Will the AI have variable difficulty settings, or be ‘one size fits all’?
 As above, it will be a bonus if I have time to implement this, and I will consider it a bonus if I have time to do so. Whether the diffi-

culty of the AI is variable depends on how the AI works and so I cannot answer this question at this stage.
 What, if any, additional outputs will there be?

 There will be one/two 2x16 LCD screens, either one that is shared between both players (which would be difficult to position on

David Piggott - iBantumi

11

Task Analysis

 the case such that it can be easily seen by both players) or two, one per player. This will be determined when I finalise the case
design.

 I may also add a piezo sounder, allowing audible feedback during gameplay and menu navigation.
 How, aside from the switches on each pit, will the players control the device (e.g. to start a new game/save a game)?

 There will be a sliding on/off switch on the side of the board. If I do implement the save/resume feature, I will endeavour to make
it such that when the board is switched off, the game is saved and restored automatically when the board is next switched back
on. Two ways of doing this come to mind.

 The first option would be by saving the whole game state (seed locations and which player’s turn it is) to non-volatile memory
every time it changes (i.e every move) and then checking if a saved game exists at power up.

 The second option would be to connect the on/off switch to the main controlling PICmicro, and have the on/off functionality done
in software, so that when the switch is in the off position, the game state is saved to non-volatile memory and then the controlling
PICmicro and LED controlling PICmicros are put into a power saving sleep mode. An interrupt would be set on the controlling
PICmicro to bring it out of sleep when the power switch is moved to the on position, and it would load the saved game (if present)
and wake the LED controlling PICmicros. The feasibility of this solution depends on how the sleep functionality of PICmicros works,
and whether it can used in the way I have described. This is an area I will need to research.

 Navigation of the LCD menus will be achieved using four push button switches; two for scrolling through options, one for confir-
mation of selection, and one for cancellation of selection.

 Does the device need to be portable?
 Yes, the device needs to portable as it is intended as a travel game. The dimensions of the Bao board I bought in Malawi seem to

be at the limits of what is portable, so iBantumi should be smaller than these:
 Folded: 345mm (length) x 100mm (width) x 35mm (height)
 Unfolded: 345mm (length) x 200mm (width) x 17.5mm (height)
 The smaller the better, and this is a specification point I consider very important.

 How will the device be powered?
 In order to be portable the device should be capable of running on battery power. The minimum voltage required by PICmicros is

5V, so in order to provide for this the device will be powered by four AA batteries in series, totalling 6V. I may or may not build a
power jack into the case to enable running the device from a mains power supply; again this is something I will focus on only once

David Piggott - iBantumi

12

Task Analysis

 I’ve finished the core gameplay. In order to protect the electronics from overvoltage/incorrect polarity, the electronics will be con-
nected to the power supply by means of a 7805 regulator and bridge rectifier.

 What criteria should the case design conform to?
 Portable
 Small
 Lightweight

 What materials will the case be made from?
 The case will be made from whatever materials best enable me to meet the criteria set out previously. This is an area I will need to

research when designing the case.
 What microcontrollers and programming languages will be used?

 Due to the complexity of the project, and the high IO and performance requirements, I will not be using the PICAXE system that is
often used in education. Instead, I will be using blank PICmicros and programming with a combination of PIC Assembler and C. The
reason for this combination is that while PIC Assembler is appropriate for the LED controlling PICmicros (as this will be a relatively
simple program, whether I choose the register only or hybrid register & array option), and will enable me to ensure the timing is
accurate, programming the game logic in PIC Assembler would be silly. The game logic will be more complicated than the LED con-
trol, particularly if I start working on things like an AI player. Therefore a higher level language is needed, and C seems to be the
common choice with PICmicros.

 I have no experience with either of these languages, so will need to do a lot of research and learning. I have recently read ’PIC in
Practice’ (D.W. Smith 2002) in preparation for this project, as I anticipated the use of PIC Assembler.

David Piggott - iBantumi

13

PICmicro master

control code

PICmicro

keyboard driver

code (key

scanning

requires one data

ports)

12 Push button play

switches

On/off slide switch

6V battery pack

(4xAA cells)

Inputs Processes Outputs

PICmicro game

logic code

PICmicro LCD

menu code

14x PICmicro

LED drivers (one

per pit/store)

14x Arrays

of 24 LEDs

(one per

pit/store)

7805 5V

regulator

System Ideas

System Idea One
This it the simplest of my
three system ideas, consist-
ing of only the components
essential to gameplay.

To clarify the output stage:

When the PICmicro game
logic code needs to update
the LEDs, it calls a function
of the master control code.
This function outputs a seri-
ally transmitted data packet
to all of the fourteen
PICmicro LED drivers (which
are all connected to the
same pin on the main
PICmicro).

Each of the 14 LED control-
ling PICmicros uses only the
part of the packet contain-
ing information for the LEDs
it controls.

Figure 5.0 - System Idea One

David Piggott - iBantumi

14

PICmicro master

control code

PICmicro

keyboard driver

code (key

scanning

requires two data

ports)

Bridge rectifier 7805 5V regulator

12 Push button play

switches

4 Menu control

switches

On/off slide switch

6V battery pack

(4xAA cells)

Inputs Processes Outputs

Piezo

sounder

16x2 character LCD display

PICmicro game

logic code

PICmicro LCD

menu code

6V mains power

supply

14x PICmicro

LED drivers (one

per pit/store)

14x Arrays

of 24 LEDs

(one per

pit/store)

LCD Driver

System Ideas

Figure 5.1 - System Idea Two

System Idea Two
System idea two adds a sig-
nificant number of addi-
tional components over
idea one:

 Power socket for a

mains supply
 Bridge rectifier to pre-

vent damage due to
incorrectly connected
power supply

 LCD driver and 16x2
character LCD display

 Four menu control
buttons

 Software based power
management

 Piezo sounder for au-
dible feedback during
play

David Piggott - iBantumi

15

System Ideas

PICmicro master

control code

PICmicro

keyboard driver

code (key

scanning

requires two data

ports)

Bridge rectifier 7805 5V regulator

16x2 character LCD display

12 Push button play

switches

8 Menu control

switches

On/off slide switch

6V battery pack

(4xAA cells)

Inputs Processes Outputs

Piezo

sounder

16x2 character LCD display

PICmicro game

logic code

PICmicro LCD

menu code

6V mains power

supply

14x PICmicro

LED drivers (one

per pit/store)

14x Arrays

of 24 LEDs

(one per

pit/store)

LCD Driver

LCD Driver

Figure 5.2 - System Idea Three

System Idea Three
System idea three is identi-
cal to system idea two in all
regards except that there
are two LCD drivers, two
LCDs, and eight menu con-
trol buttons (four per
player). This would allow
me to provide independent
menu functionality for each
player.

David Piggott - iBantumi

16

System Ideas - LED Control - Arrays vs. Direct Drive

 As previously mentioned, I had also recognised the option of using
array addressing to control the LEDs. This is best illustrated by the
schematic that is figure 6.0.

Array addressing works by connecting each row and column to a pin
on the controlling PIC, configured as output.

For example, to switch LED D8 on, the pin connected to column SW6
would be switched high, and the pin connected to row SW2 switched
low. All other rows and columns are disconnected.

The first reason for not using this technique is that if I was to use ar-
ray addressing, each LED could only be on for 1/24 of a second; this
would result in the LED running at only 1/24 of its usual brightness,
which is clearly not satisfactory. The way around this would be to
use set/reset latches for each LED, but this would be complicating
matters even further.

The second reason is that it would further complicate the programming for register PICmicros, and bearing in mind that I will be programming
in assembly code, it makes sense to try and keep the program as simple as possible.

Finally, using array addressing would likely result in more complicated PCB artworks than if I use direct control, and in turn would cause the
PCB to be larger; not good when I have decided that a key specification point is that the device will be as small as possible given that it’s a pro-
totype.

Fortunately, I will be using array scanning to read the switches, so I will gain some experience with the array technique in doing that.

Figure 6.0 - Array addressing to control LEDs of one pit

David Piggott - iBantumi

17

System Ideas - LCD Menus

 The purpose of the LCDs is twofold.

Firstly, to provide a visual menu system to aid players in controlling the extra features, such as the save/resume functionality, sound options,
and AI player. As said though, whether I implement these depends on if I have time. The second purpose is to provide in-game statistics, such
as the total number of seeds on a players side and which players turn it is. If I have time to implement an AI player, I may also add other statis-
tics (that would be calculated for the AI player anyway).

The reason for this page is to discuss whether one or two LCDs are necessary, as this is the final point I need to decide on before I can create
the specification. The benefits of using two LCDs can be summarised as follows:
 Allows different information to be given to each player and therefore their own personal menu screen and statistics.
 Slightly easier to see due to better viewing angle.
 The case idea supporting two LCDs is better aesthetically than the idea supporting only one (in my opinion).
While the drawbacks can be summarised as follows:
 Adds to the total cost of an already expensive product.
 Adds to the complexity of the program.
 Adds to the complexity of the circuit (an additional four switches would be required if I used two LCDs, increasing the number of pins

required for switch scanning from eight to nine).
 Adds to the complexity of the case design.

For these reasons I have decided to use only one LCD. Therefore I will be using case idea six for my case design (see overleaf - the decision was
down to idea five or six, depending on whether I chose one or two LCDs), and system idea two for the schematic.

David Piggott - iBantumi

18

Case Ideas

Case Idea One
In creating my case ideas, I was
already limited to some extent by
the requirements of the game;
that is, it must be a 2 x 6 array of
LEDs, with 24 LEDs in each array,
and an additional array at each
end acting as the players man-
cala.

As I have not yet decided whether
to have one or two LCD screens,
my case ideas offer both options.

Figure 7.0 shows my first case
idea. In this idea, I have included
two LCDs, one per player. The
case is made from polished wood,
creating a fusion of modern elec-
tronics and traditional craftsman-
ship should I choose this case
idea.

The LED arrays are arranged 4 x 6,
so that the case is shorter and
wider than if they were 6 x 4.

Figure 7.0 - Case Idea One

David Piggott - iBantumi

19

Case Ideas

Case Idea Two
With case idea two I wanted the
shape to be noticeable different
to that of idea one, while working
within the constraints of requiring
336 LEDs.

In order to do this, I arranged the
LED arrays 6 x 4 so that the case is
longer and thinner than idea one.
I moved the LCDs from the sides
to the ends.

The other change in this idea is
that the theme is different; in-
stead of a wooden case construc-
tion, the case is made from alu-
minium.

A progression from idea one
where all the LEDs were red, this
idea features red LEDs for one
player and blue for the other, to
make it easier to differentiate be-
tween players seeds and see who
is winning.

Figure 7.1 - Case Idea Two

David Piggott - iBantumi

20

Case Ideas

Case Idea Three
Here is a case idea with only one
LCD, positioned such that is easily
visible to both players.

An improvement on idea two, the
LEDs in the mancala are coloured
green. There are two benefits of
this:
1) New players recognise the

significance of the mancala
more quickly

2) Players can easily differenti-
ate between seeds in the
mancala and those still in
play.

Additionally, the case is now black
vacuum formed HIPS. While it
may not be so aesthetically pleas-
ing, it’s important that I recognise
this is a prototype, and so vac
forming the case I will save valu-
able time on case production, al-
lowing me to spend more time on
the electronics and programming.

Figure 7.2 - Case Idea Three

David Piggott - iBantumi

21

Case Ideas

Case Idea Four
One thing I don’t like about my
previous three ideas is the fact
that the LCDs protrude from the
main case body; in idea one they
do so from the sides, and in ideas
two and three from the top.

In idea four, I have positioned the
LCDs such that they do not pro-
trude from the main case body by
indenting them.

I have reverted to 6 x 4 LED arrays
in this idea to make better use of
the extra width created in the
mancala sections due to the LCDs.

The case construction is now
transparent acrylic for the main
body, and translucent blue acrylic
for the mancala sections.

The mancala LEDs are now white
instead of green, as I think will be
better in terms of aesthetics.

Figure 7.3 - Case Idea Four

David Piggott - iBantumi

22

Case Ideas

Case Idea Five
One thing I didn’t like about idea
four was the fact that although
the LCDs no longer protrude from
the main case body, the case
shape is still altered due to the
angle of the screens.

To remedy this, I have positioned
the LCDs such that they are in-
dented in the board, as seen in
figure 7.4

The other change from idea four
is that the case construction is
now entirely transparent acrylic.

Figure 7.4 - Case Idea Five

David Piggott - iBantumi

23

Case Ideas

Case Idea Six
Of the five ideas I had come up
with so far, my preference is with
the fifth, as it improves on all the
things I didn’t like about the oth-
ers.

However, as already mentioned, I
need to have ideas that cater for
both one and two LCDs, as I still
haven’t decided how many to
have. For this reason, I created
this sixth sketch, with the only
change from idea five being that
there is one LCD, positioned at
one end and visible to both.

As the extra room in the mancala
sections is no longer required, the
LED array dimensions are now 4 x
6 again. This shortens the overall
board size, compensating for the
extra length due to the LCD.

Figure 7.5 - Case Idea Six

David Piggott - iBantumi

24

Specification

 I have grouped the specification points based on the aspects of the design that they determine, and ranked them by number based on how
important I think they are to the design.

Player Input
1. Each pit will have a push button switch, pressed by the player to initiate their move by taking the seeds from that pit into the hand.
2. There will be one LCD, shared between the two players, positioned at the end of the board such that it can be seen by both players.
3. The LCD menus will be controlled by four push button switches; two to change the selection, and two to cancel/confirm the selection.
4. This totals 12pit + 4menu = 16total switches, which can be arranged and scanned in a 4x4 array, such that only 8 I/O pins (one port) are re-

quired on the main controlling PICmicro.

Case
1. The case will be based on case idea six.
2. The main material will be transparent acrylic. Some parts may be coloured translucent acrylic (e.g. red/blue for the mancala ends to in-

dicate possession of the seeds in that area by the player).
3. The on/off switch will be a slide switch mounted on the same side of the case as the LCD.

LED Control
1. The 336 seed LEDs will be grouped into arrays of 24 LEDs, and each group controlled by a 28 pin PICmicro, programmed with assembly

code, that I will refer to as LED registers.
2. Each LED will be connected directly to an output on an LED register.
3. The LED registers will be controlled by a serial pulse train from the main controlling PICmicro.
4. Therefore the LED registers will have a minimum of 25 I/O pins (24 output, 1 input for the serial pulse train).
5. The control protocol will be detailed in the development section, as and when I develop it.

Processing
1. The rules described in the following section (gameplay) will be applied by a single PICmicro, programmed using C.
2. One output pin will be required for the piezo sounder.
3. One input pin will be required for the on/off switch.

David Piggott - iBantumi

25

Specification

 4. Eight I/O (four input, four output) will be required for the push button switches.
5. One output pin will be required for transmitting the serial pulse train to the LED registers.
6. One to eight output pins will be required for controlling the LCD, depending on how I choose to drive it (whether the driver is controlled

by serial or parallel signalling).
7. Therefore a maximum of (1 + 1 + 8 + 1 + 8) = 19 I/O pins will be required on the controlling PICmicro.

Gameplay
1. The objective is to have the most seeds in your mancala at the end of play.
2. There will be six pits per player.
3. There will be one mancala per player, situated to the right of their six pits.
4. Gameplay will start with two seeds in each pit.
5. A turn consists of one or more moves.
6. Whether another move is granted depends on the outcome of the previous move.
7. A move starts when a player takes the seeds from one pit into the hand (by pressing the switch located in that pit).
8. The seeds are then sown anticlockwise one at a time around the board.
9. Seeds cannot be moved from the mancala.
10. If when a move terminates, the last seed in the hand was sown into the player’s mancala, the player is granted (and is obliged to take)

another move.
11. If when a move terminates, the last seed in the hand was sown into a pit directly opposing an occupied opponents pit, the seeds in that

pit and the opponents pit are moved at once into the mancala of the player who initiated the move.
12. The game terminates when either player has no seeds left in play, and the winner is the player with the most seeds on their side of the

board.

Extra Features
 The AI player implementation is subject to be having the time and knowledge/ability to do so.
 I may also add, accessible via the LCD menu, some “Easter eggs”; i.e. the ability to strobe all the LEDs for use as a floodlight type device.

David Piggott - iBantumi

26

Development Time Plan

ID Task Name Start Finish Duration

Nov 2007 Dec 2007 Jan 2008

4/11 11/11 18/11 25/11 2/12 9/12 16/12 23/12 30/12 6/1

5

6

7

8

9

10

11

12

13

14

15

18d28/11/200711/11/2007Core component research

2d30/11/200729/11/2007Familiarisation with assembly code

5d07/12/200703/12/2007
LED register & control protocol

development

2d09/12/200708/12/2007
LED pit board schematic & artwork

development

5d14/12/200710/12/2007Familiarisation with C & LCD research

25d07/01/200814/12/2007Game logic code development

4d11/01/200808/01/2008LCD menu development

5d18/01/200814/01/2008
Game logic board schematic & artwork

development

9d27/01/200819/01/2008Case dimensioning & model creation

1d28/01/200828/01/2008Production time plan

44d12/03/200829/01/2008Production

13/1 20/1 27/1

Feb 2008 Mar 2008

3/2 10/2 17/2 24/2 2/3 9/3 16/3

Apr 2008

23/3 30/3 6/4

23d06/01/200815/12/2007Christmas Holidays

9d17/02/200809/02/2008Spring Half Term

18d06/04/200820/03/2008Easter Holidays

1

2

3

4 9d09/11/200701/11/2007Project initialisation

16 7d19/03/200813/03/2008Completion of documentation

Figure 8.0 - Development time plan

David Piggott - iBantumi

27

Component Research - PICmicro Programmmer Research

 Over the last few years the department has transitioned from using standard PICs to PICAXE, which
means that there are currently no suitable programmers for PICs (PICs these days support in-circuit se-
rial programming, in a similar fashion to PICAXE, and this is a feature I fully intend to use). As my laptop
has no serial port, one of the requirements of the programmer is that it interfaces with the develop-
ment machine by USB.

The most suitable programmer in the price range is the PICkit 2 Microcontroller Programmer manufac-
tured by Microchip, and fortunately, available from Rapid Electronics for £44.

The benefits of using an in-circuit programmer and debugger can be summarised as follows:
 Allows quicker development as the PIC must not be constantly moved from the circuit to an out

of circuit programmer.
 The debugging facility will aid me in development by allowing me to step through the program

and inspect the values in the files of PIC.
 Reduces risk of damage to PICs due to repeated removal and reinsertion of the device into a

socket.

Figure 9.0 shows the PICkit 2 programmer.

Figure 9.0 - PICkit 2

David Piggott - iBantumi

28

Component Research - LED Register PICmicro Research

 The requirements of the LED registers can be summarised as follows:
 28 pin package (to keep PCB size to a minimum, as even fourteen 28 pin packages will take a lot of

space)
 24 outputs
 1 input
 As cheap as possible, given the requirement for fourteen
 Programmable with assembly code to ensure accurate timing

With this in mind, I went to the Microchip
website and used their parametric search for
PICs with the following options (see overleaf for the results):
 28 pin device
 25 I/O
 SPDIP package

I sorted the results by price and found the cheapest PICmicro to meet the
criteria is the PIC16F882, Microchip part number PIC16F882-E/SP, at £0.94
each. However, searches on Rapid, Maplin and Radio Spares yielded no re-
sults so I was left only with the option of ordering direct from Microchip.

As a precaution against losses due to short circuit/mishandling, I’ve ordered
excess (twenty). Because orders placed direct with Microchip ship from Thai-
land, I also ordered a single PIC18F252-I/SP from Rapid electronics for £4.00,
along with the PICkit 2 programmer so that I can start developing the pro-
gram while waiting for the PIC16F882s to arrive; if I had ordered twenty of
the PIC18F252-I/SPs from Rapid, this would have cost £80.00. Figure 10.1
shows the cost breakdown for this order.

Figure 10.0 - PIC16F882

Figure 10.1 - PIC16F882

David Piggott - iBantumi

29

David Piggott - iBantumi

30

David Piggott - iBantumi

31

Component Research - LEDs

5 and 12V 5mm LED

A range of miniature 5mm LEDs in-
corporating an in-built series resistor
enabling the LED to be directly con-
nected to 5 or 12V supply lines.

 All devices are intensity and colour matched and housed in dif-

fused coloured packages
 Cathode identified by flat on body
 Package style 8
 Kingbright L-7113V series (formerly L-53V)

Analysis

Benefits
 5mm diameter
 Matched intensity
 Matched viewing angles (all 30°)
 Direct connection possible without series resistor

Drawbacks
 Only available in red
 Therefore the intensity will not actually be matched as I would

be mixing these LEDs with others in order to have blue and
white colours too

Colour IF VF VR PTOT Lum. int.
(mcd)

View Wave

 max. max. max. max. @IF (10mA) angle length

5V HE Red 17.5mA 6V 5V 85mW 30 30° 625nm

5V Green 17.5mA 6V 5V 85mW 20 30° 568nm

5V Yellow 17.5mA 6V 5V 85mW 20 30° 588nm

12V HE Red 11.5mA 14V 5V 120mW 30 30° 625nm

12V Green 11.5mA 14V 5V 120mW 20 30° 568nm

12V Yellow 11.5mA 14V 5V 120mW 20 30° 588nm

David Piggott - iBantumi

32

Component Research - LEDs

5mm Standard LEDs

A range of high efficiency 5mm LEDs that are
suitable for PCB and panel mounting applica-
tions.

They are available with diffused, transparent or
water clear lenses in a variety of colours.
 All devices are intensity and colour matched
 Cathode identified by flat on body
 Kingbright L-7113 series

Analysis

I have only included technical information for the diffused lens range
because this is the only range with all the colours I require.

Benefits
 5mm diameter
 Matched intensity
 Matched viewing angles within lens categories

Drawbacks
 Only available in red and white; not blue
 Therefore the intensity will not actually be matched as I would

be mixing these LEDs with others in order to have blue as well
 It is unknown to me at this at point whether I would be able to

power these directly, without a series resistor

Colour Wave-
length

Lum. int.
(mcd)

IF VF VF VR View

 (nm) @ IF
(10mA)

max. (mA) typ. (V) max. (V) max. (V) angle

Bright red 660 5 25 2.25 2.5 5 30°

HE red 625 45 30 2 2.5 5 30°

Amber 625 25 30 2 2.5 5 30°

Pure or-
ange

610 30 25 2.05 2.5 5 30°

Yellow 588 20 30 2.1 2.5 5 30°

Green 565 20 25 2.2 2.5 5 30°

Pure green 555 5 25 2.25 2.5 5 30°

White 0.31, 0.31
*

1000 ** 30 3.2 4 5 30°

David Piggott - iBantumi

33

Component Research - LEDs

5mm High brightness LEDs

A range of high intensity LEDs in a 5mm pack-
age that features a blade cathode which acts
as a heat sink to dissipate heat at high current
levels.
 High luminous intensity for use in a wide

range of indication and illumination ap-
plications requiring a high output

 Manufactured using the latest technologies for long life, energy
efficiency and high reliability

 Suitable for PCB and panel mounting applications
 Water clear lens

Analysis

Benefits
 5mm diameter
 Matched viewing angles
 Available in red, white and blue

Drawbacks
 Blade cathode may complicate PCB artwork
 Unmatched intensities
 It is unknown to me at this at point whether I would be able to

power these directly, without a series resistor

Colour Wave-
length

Lum. int.
(mcd)

IF VF VF VR View

 (nm) @ IF
(30mA)

max. (mA) typ. (V) max. (V) max. (V) angle

White 0.30/0.31
*

30000 50 3.6 4.2 5 15°

Red 625 20000 50 2.2 2.6 5 15°

Orange 605 20000 50 2.2 2.6 5 15°

Yellow 590 20000 50 2.2 2.6 5 15°

Green 525 30000 50 3.6 4.2 5 15°

Cyan 505 30000 50 3.6 4.2 5 15°

Blue 470 12000 50 3.6 4.2 5 15°

David Piggott - iBantumi

34

Colour Wave-
length

Lum. int.
(mcd)

IF VF VF VR View

 (nm) @ IF (10mA) max. (mA) typ. (V) max. (V) max. (V) angle

Superbright
red

660 4500 30 2.2 2.5 5 20°

Superbright
red

660 1000 30 1.85 2.5 5 20°

Superbright
red

640 900 30 1.85 2.5 5 20°

Superbright
red

640 1400 30 1.85 2.5 5 20°

Superbright
red

640 1700 30 1.85 2.5 5 20°

Superbright
red

640 2800 30 1.85 2.5 5 20°

Hyper red 640 3000 40 2.45 2.6 5 50°

Hyper red 640 3500 40 2.45 2.6 5 20°

Superbright
red

640 4000 30 1.85 2.5 5 20°

Hyper red 640 4000 40 2.45 2.6 5 12°

Blue 470 1000 30 3.65 4.2 5 16°

Blue 470 1200 30 3.7 4.3 5 16°

Blue 470 2200 30 3.5 4 5 15°

White 0.40/0.43* 200 30 3.8 4.5 5 20°

White 0.34/0.35* 3200 30 3.5 4 5 20°

Component Research - LEDs

5mm Ultrabright LEDs

A range of high intensity, ultrabright LEDs that employ
the latest technology to produce LEDs that are highly visible and
therefore suitable for a wide variety of applications. They are avail-
able with diffused, transparent or water clear lenses in a variety of
colours, including white and high intensity blue.
 Cathode identified by flat on body
 Particularly suitable for signalling applications and as an alter-

native to filament lamps

Analysis

I have only included technical information for the red, white and
blue LEDs.

Benefits
 5mm diameter
 Available in red, white and blue

Drawbacks
 Unmatched viewing angles
 Unmatched intensities
 It is unknown to me at this at point whether I would be able to

power these directly, without a series resistor

David Piggott - iBantumi

35

Component Research - LEDs

The board requires 144 red LEDs, 144 blue LEDs, and 48 white LEDs; blue for one player, red for the other, and white for each player’s man-
cala. When choosing which LEDs to use, I was looking for several things:
 5mm diameter; any smaller would lead to problems populating the PCB
 Matched intensity between colours, so that the board does not appear ‘unbalanced’
 Matched viewing angles, for the same reason
 The lowest unit price, since in total 336 are required!
 The ability to run them without a series resistor between the LED and PIC, as this will greatly simplify the PCB artwork
I started my search by looking at the 5mm LEDs section on the Rapid Electronics website and summarised the key details of all the suitable
LEDs found in the previous four pages. I then compiled my findings into the following table (figure 11.0). In order to standardise the specified
intensities, I took the specified intensity for each device, divided it by the current it was specified for and multiplied it by 25 (this is the maxi-
mum current the outputs of the PIC16F882 can source/sink). This does however assume that intensity is directly proportional to current.

Range Colour Lens type Costs Viewing angle
(°)

Intensity at 25mA
(mcd)

Max Current
(mA)

Max Voltage (V)

5 and 12V 5mm LED Red Diffused £11.52 for 144 30 30* 17.5 6

5mm Standard LEDS Bright red Diffused £6.48 for 144 30 15 25 2.5

5mm Standard LEDS HE red Diffused £7.20 for 144 30 112.5 30 2.5

5mm Standard LEDS White Diffused £12.48 for 48 30 2500 30 4

5mm High brightness LEDs Red Water clear £15.84 for 144 15 25000 50 2.6

5mm High brightness LEDs White Water clear £18.72 for 48 15 16666 50 4.2

5mm High brightness LEDs Blue Water clear £21.60 for 144 15 10000 50 4.2

* at 17.5mA because this is the current consumption at 5V for this LED, given that it’s designed to run without a series resistor

Figure 11.0 - Continued overleaf

David Piggott - iBantumi

36

Component Research - LEDs

Figure 11.0 - Continued

Range Colour Lens type Costs Viewing angle
(°)

Intensity at 25mA
(mcd)

Max Current
(mA)

Max Voltage
(V)

5mm Ultrabright LEDs Superbright Red Water clear £20.16 for 144 20 11250 30 2.5

5mm Ultrabright LEDs Superbright Red Water clear £8.64 for 144 20 2500 30 2.5

5mm Ultrabright LEDs Superbright Red Water clear £6.48 for 144 20 2250 30 2.5

5mm Ultrabright LEDs Superbright Red Water clear £7.20 for 144 20 3500 30 2.5

5mm Ultrabright LEDs Superbright Red Water clear £7.20 for 144 20 4250 30 2.5

5mm Ultrabright LEDs Superbright Red Water clear £12.96 for 144 20 9800 30 2.5

5mm Ultrabright LEDs Superbright Red Water clear £17.28 for 144 20 10000 30 2.5

5mm Ultrabright LEDs Hyper Red Water clear £12.96 for 144 50 7500 40 2.45

5mm Ultrabright LEDs Hyper Red Water clear £20.88 for 144 20 8750 40 2.45

5mm Ultrabright LEDs Hyper Red Water clear £20.88 for 144 12 10000 40 2.45

5mm Ultrabright LEDs Blue Water clear £57.60 for 144 16 3000 30 4.2

5mm Ultrabright LEDs Blue Water clear £53.28 for 144 16 3000 30 4.3

5mm Ultrabright LEDs Blue Water clear £40.32 for 144 15 5500 30 4.0

5mm Ultrabright LEDs White Water clear £12.48 for 48 20 500 30 4.5

5mm Ultrabright LEDs White Water clear £12.96 for 48 20 8000 30 4.0

David Piggott - iBantumi

37

Component Research - LEDs

From the summary table I created, figure 9.0, it can be seen that the potentially most expensive colour is blue, ranging from £21.60 to £57.60
for 144. Therefore in choosing which LEDs to use it is wise to first of all choose the cheapest blue LEDs and then select red and white LEDs to
match. The cheapest blue LEDs are those from the 5mm High Brightness LEDs range at £21.60 for 144. However, they have a blade cathode
which could be limiting when I am designing the PCB artwork. The lens is water clear, intensity 10000mcd at 25mA, viewing angle 15°, maxi-
mum current 50mA and maximum voltage 4.2V. I now need to select the cheapest red and white LEDs with the same lens type, similar inten-
sity and viewing angles. This rules out the 5 and 12v range, and the standard range. It seems that the best match for red is one of the super-
bright reds from the 5mm Ultrabright LEDs range, with viewing angle 20° and brightness 10000mcd. For whites, it is not so important that
viewing angles and intensities match because being in the mancala, they need not be ‘balanced’ with those on the rest of the board. There-
fore I can loosen the constraints for the sake of reducing cost. Therefore, the most appropriate white LEDs are the 8000mcd ones from the
ultrabright range (only 48p more in total than those with 500mcd intensity, and 8000mcd is a better match).

Figures 11.1 and 11.2 list two options I have put together; option two consists only of those with normal cathodes as this will give me more
options when creating PCB artworks. As can be seen neither is cheap! Unfortunately there isn’t a lot I can do about this, other than changing
the specification to avoid blue LEDs but it is important to the design they are blue, as red and blue are ‘classic’ colours for two team games.

5mm Ultrabright LEDs Superbright Red Water clear £17.28 for 144 20 10000 30 2.5

5mm Ultrabright LEDs White Water clear £12.96 for 48 20 8000 30 4.0

5mm High brightness LEDs Blue Water clear £21.60 for 144 15 10000 50 4.2

5mm Ultrabright LEDs Superbright Red Water clear £12.96 for 144 20 9800 30 2.5

5mm Ultrabright LEDs White Water clear £12.96 for 48 20 8000 30 4.0

5mm Ultrabright LEDs Blue Water clear £40.32 for 144 15 5500 30 4.0

Figure 11.1 - Option One (Blue LEDs have blade cathode) Total Cost: £51.84

Figure 11.2 - Option Two (normal cathodes) Total Cost: £66.24

David Piggott - iBantumi

38

Component Research - Power Supply

The device will run from 6V power supplies; 4x AA cells as an internal power supply, and an external 6V power supply. The external power will
be used in preference to the battery, which will exist to enable use as a travel game. To protect against incorrectly inserted batteries/incorrect
power jack insertion, a bridge rectifier will be incorporated into the circuit. One or more 7805 5V voltage regulators will also be included, to
protect against incorrect voltage as well as the protection against incorrect polarity provided by the bridge rectifier.

Battery boxes with covers

Enclosed AAA and AA size battery boxes with detachable lids,
moulded in black ABS.
 Lids may be secured with the small screws provided
 Terminated in red and black

stranded 26AWG wires approx.
150mm long

 Also available with fitted minia-
ture on/off switch wired into
the black (negative) wire

Price: £0.38 (for 4 X AA version, with-
out switch)

AA Battery holders

Holds batteries securely in place to provide a positive connection and
maintain a low contact resistance.
 Available with PC terminals or

wire leads
 Polypropylene holder material
 Nickel-plated spring steel
 Nickel-plated brass PC pins
 26AWG tinned red and black

150mm wire leads

Price: £0.99 for 4 X AA PCB mount-
ing version, £0.99 for 4 X AA flying
leads version.

David Piggott - iBantumi

39

Component Research - Power Supply

8A Bridge rectifiers

8A plastic encapsulated bridge
rectifiers for direct mounting
to printed circuit boards.
 Dimensions 19.6(H) x

19.6(W) x 7.5(H)mm
 Pitch 13.2mm
 Weight: 6.9g
 Case to UL 94V-0

Price: £0.30 for 100V rated version

7805/7812 1A Fixed voltage regulators

A range of automatic, linear fixed voltage regulators that are designed
to supply a constant regulated output voltage of either +5V DC or
+12V DC. These devices operate by sensing the actual output of the
voltage regulator and comparing it against an internal reference voltage. The error pro-
duced by this comparison is inverted and used to compensate the regulator output.

This feedback loop thus gives a stable output voltage that is ideal for fixed voltage use in
applications such as on-card regulation for elimination of noise and distribution prob-
lems associated with single-point regulation.
 Features internal current limiting and thermal shutdown
 Delivers greater than 1A output current with adequate thermal management
 Supplied in a TO-220 package

Price: £0.25 for 5V version

Input voltage max. +35V

Dropout voltage 2.5V

Output voltage typ. 7805 +5V

 7812 +12V

Output current peak 1.7A

Power dissipation max. Internally limited

Junction temperature max. +125°C

Operating temperature range 0°C to +125°C

David Piggott - iBantumi

40

Component Research - LCDs

Because there are enough unknowns (in terms of time and complexity) in this project al-
ready, I have decided to try and keep the LCD as simple as possible, by using the same LCD
kit as I did in my AS project (alarm clock for heavy sleepers), minus the backlight. This way I
will be able to use the experience I have gained with these devices to my advantage, mini-
mising the time required for familiarisation (some will be necessary, as the serial output
method for a PIC programmed with C will be different to that with a PICAXE and BASIC).

Other options for LCDs for PICs typically involve parallel driven HD44780 or equivalent driv-
ers, and so aswell as requiring more familiarisation time would also require more I/O on the
game logic PIC.

Serial LCD
A module that allows
PICAXE projects to
display messages on
a LCD. Interface via
one single serial line
or i2c bus. Optional
clock upgrade
(AXE034 -purchase
separately) adds real
time clock and alarm features to the module.

Price: £14.10

David Piggott - iBantumi

41

Component Research - Switches

According to the specification section titled ‘Player input’, point two, the board
should have (green) illuminated buttons or normal buttons with adjacent LEDs for
each pit. I have opted for the latter; although I found suitable tactile switches with
built in illumination, I think that these miniature tactile switches combined with ad-
jacent LEDs will be better in terms of aesthetics (and cheaper!)

These switches will also be ideal for the LCD menu buttons.

The adjacent LEDs (12 in total) can be connected to an extra (15th) PIC16F882 LED
register.

Miniature tactile
switch
12 x 12mm PCB mounted
tactile switches.
 Positive switch ac-

tion
 Round button
 Single pole normally

open contacts
 Diptronic DTS series

Price: £0.20

Matching buttons for the above switches. I will be using the black
square version.

Miniature tactile switch buttons
A range of square and round buttons for use
with the 12 x 12mm tactile switches, (not suit-
able for round head switches).

 Round 13mm dia x 5.5mm
 Square 12mm square x 5.5mm

Price: £0.05

David Piggott - iBantumi

42

Component Research - Game Logic PICmicro

The criteria I set when choosing the game logic PICmicro are
as follows:
 C compiler friendly instruction set
 Reasonably large program memory
 Sufficient I/O (19 according to specification) plus some

spare
 In Circuit Serial Programming support

The 18F252-I/SP meets all these and is supplied in a 28 pin DIL
package. It has 32k of program memory (highest available in
the range but only 20p more).

Unfortunately, this means very little to me; the only perspec-
tive I have is that my AS project (heavy sleeper’s alarm clock)
used all 2kB of program memory and that I had to cut some
features in order to fit it in and that the program for iBantumi
is going to be many times more complicated.

PIC18F252-I/SP

This powerful 10MIPs (100ns instruction execution) yet easy-
to-program (only 77 single word instructions) CMOS FLASH-
based 8-bit microcontroller packs the powerful PIC architec-
ture into a 28/40/44-pin package (including the low footprint
Skinny DIL package) and is upwardly compatible with the
PIC16C5x, PIC12Cxxx, PIC16Cxx and PIC17Cxx devices. This
provides a seamless migration path of software code to higher levels of hardware
integration. The range of devices is ideal for manufacturing equipment, instrumen-
tation and monitoring, data acquisition, power conditioning, environmental moni-
toring, telecom and consumer audio/video applications. Runs from standard 5V DC
rail.
 Multi-channel ADC

 Parallel Slave Port on 252, 452, 4420 and 4520 devices

 4 timers

 WDT with on-board RC oscillator

 ‘C’ compiler friendly development environment

 Single supply 5V In-Circuit Serial Programming via 2-pins

 Compatible 10-bit ADC with fast sampling rate

 Serial port either 3-wire SPI, or 2-wire I²C bus

 Addressable USART supports RS-485 and RS-232

 High current sink/source 25mA/25mA

Price: £4.00

David Piggott - iBantumi

43

LED Control Protocol - Ideas

 As already stated, the LED registers (fourteen in number) will all be controlled by the same serial pulse train, transmitted as a single packet of
data. Therefore transmission of only one packet is necessary to update all LEDs.

To simplify issues with regard to timing, there will be no clock or specified data transmission data rate, and instead the status of each bit will
be given by its pulse length. This is best illustrated by figure 12.0:

The above example would transmit the byte ‘11101011’, where each bit represents the status of a single LED on the board. Since the only
identifying property of a bit is where in the sequence it occurs, the start pulse is necessary so that the registers know which LED it refers to.

As already specified, there will be fourteen registers, each controlling 24 LEDs (one pit). With 336 LEDs in total, each packet will consist of 337
pulses.

I chose the timings such that a minimum packet rate of 25Hz is possible; this can be seen from the fact that assuming all LEDs are off
(maximum packet duration) the time period is 1(100) + 336(75) + 336(25) = 33700μs = 0.0337s. F = 1/T = 1/0.0337 = 29.7Hz.

Figure 12.0 - Serial control protocol

Le
ve

l

Time

100μs
start bit

25μs

50μs
On

25μs

50μs
On

25μs

50μs
On

25μs

75μs
Off

25μs

50μs
On

25μs

75μs
Off

25μs

50μs
On

25μs

50μs
On

David Piggott - iBantumi

44

LED Register Code Development - 0.1

I have been using MPLAB version 8.01 most of the time (prior to this it was 7.60, 7.62 and 8.00), and the PICKit 2 2.40 software and latest firm-
ware (2.1000). When setting up the project in MPLAB I elected to use a linker script as this is the recommended option in the tutorial. The
project consists of three files:
 16f822.lkr - the linker script (included with MPLAB)
 p16F882.inc - processor specific variable definitions (included with MPLAB)
 16F882TMP0.ASM - the actual pro-

gram I am developing

Figure 13.0 shows the workspace in MPLAB I
have set up for developing the register code.
 Right hand pane is the actual code
 Top left pane is project file browser
 Top centre pane is output showing

build information etc.
 Middle left pane is the watch - shows

the values of selected registers for de-
bugging purposes

 Lower left pane is the stimulus work-
book - I have it set up to fire asynchro-
nous pulses of 50, 75 and 100µs to pin
3, port E (the serial input pin)

I am using the built in module, MPLAB SIM
for debugging purposes.

Figure 13.0 - MPLAB LED Register Project

David Piggott - iBantumi

45

LED Register Code Development - 0.1
;*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
;

*
;

 F
ile

n
am

e:

1

6
F8

82
 R

eg
is

te
r

C
o

d
e

*

;
 F

ile
 V

er
si

o
n

:

0
.1

*

;

*

;
 A

u
th

o
r:

D

av
id

 P
ig

go
tt

*

;
 C

o
m

p
an

y:

p

ig
go

tt
.m

e.
u

k

*

;

*

;*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

 L

IS
T

 p

=1
6

F8
8

2

; l

is
t

d
ir

ec
ti

ve
 t

o
 d

ef
in

e
p

ro
ce

ss
o

r

 #
IN

C
LU

D
E

<p
16

F8
8

2
.in

c>

 ;

 p
ro

ce
ss

o
r

sp
ec

if
ic

 v
ar

ia
b

le
 d

ef
in

it
io

n
s

 _

_C
O

N
FI

G
 _

C
O

N
FI

G
1

, _
LV

P
_O

FF
 &

 _
FC

M
EN

_O
FF

 &
 _

IE
SO

_O
FF

 &
 _

B
O

R
_O

FF
 &

_C

P
D

_O
FF

 &
 _

C
P

_O
FF

 &
 _

M
C

LR
E_

O
N

 &
 _

P
W

R
TE

_O
N

 &
 _

W
D

T_
O

FF
 &

_I

N
TR

C
_O

SC
_N

O
C

LK
O

U
T

 _
_C

O
N

FI
G

 _
C

O
N

FI
G

2
, _

W
R

T_
O

FF
 &

 _
B

O
R

4
0

V

 ; '
__

C
O

N
FI

G
' d

ir
ec

ti
ve

 is
 u

se
d

 t
o

 e
m

b
ed

 c
o

n
fi

gu
ra

ti
o

n
 w

o
rd

 w
it

h
in

 .a
sm

 f
ile

.
; T

h
e

la
b

le
s

fo
llo

w
in

g
th

e
d

ir
ec

ti
ve

 a
re

 lo
ca

te
d

 in
 t

h
e

re
sp

ec
ti

ve
 .i

n
c

fi
le

.
; S

ee
 d

at
a

sh
ee

t
fo

r
ad

d
it

io
n

al
 in

fo
rm

at
io

n
 o

n
 c

o
n

fi
gu

ra
ti

o
n

 w
o

rd
 s

et
ti

n
gs

.
; N

o
te

 t
h

at
 t

h
e

_D
EB

U
G

_O
N

 is
 c

h
an

ge
d

 b
y

se
le

ct
in

g
a

d
eb

u
gg

er
 o

r
p

ro
gr

am
m

er
.

; T

h
er

e
is

n
't

 m
u

ch
 a

d
va

n
ta

ge
 t

o
 s

et
ti

n
g

it
 in

 t
h

e
co

d
e.

 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; ; V

ar
ia

b
le

 D
ef

in
it

io
n

s
; ; A

va
ila

b
le

 D
at

a
M

em
o

ry
 (

al
so

 R
A

M
)

is
 d

iv
id

ed
 in

to
 4

 B
an

ks
.

Sp
ec

ia
l F

u
n

ct
io

n

; R
eg

is
te

rs
, G

en
er

al
 P

u
rp

o
se

 R
eg

is
te

rs
, a

n
d

 A
cc

es
s

R
eg

is
te

rs
 a

re
 s

h
o

w
n

 b
el

o
w

:
; ;

B

an
k

0

 B

an
k

1

 B

an
k

2

B
an

k
3

; S

FR

 0

x0
0

-0
x1

F

0x
80

-0
x9

F

0
x1

0
0

-0
x1

0
F

0

x1
80

-0
x1

8
D

; G

P
R

 0
x2

0
-0

x7
F

0x

A
0

-0
xB

F

-

 -

; A

C
C

ES
S

0

x7
0

-0
x7

F

0
xF

0
-0

xF
F

0

x1
7

0
-0

x1
7

F

0
x1

F0
-0

x1
FF

; ; T

h
e

A
cc

es
s

B
an

k
R

eg
is

te
rs

 a
re

 m
u

tu
al

 a
cr

o
ss

 e
ac

h
 a

d
d

re
ss

 s
p

ac
e.

; ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
 ; U

D
A

TA
 d

ec
la

re
s

a
se

ct
io

n
 o

f
u

n
in

it
ia

liz
ed

 d
at

a
V

A
R

IA
B

LE
S

 U
D

A
TA

 ;

 V
A

R
IA

B
LE

S
is

 t
h

e
n

am
e

o
f

th
e

se
ct

io
n

 o
f

m
em

o
ry

Ti

m
e

R

ES

 1

 ;

u
n

in
it

ia
liz

ed
 d

at
a,

 p
la

ce
d

 b
y

lin
ke

r
in

 G
P

R
's

.
C

o
u

n
t

R
ES

 1

Te

m
p

R

ES

1

 ; U
D

A
TA

_S
H

R
 d

ec
la

re
s

a
se

ct
io

n
 o

f
sh

ar
ed

 (
ac

ro
ss

 a
ll

b
an

ks
)

u
n

in
it

ia
liz

ed
 d

at
a

IN
T_

V
A

R

 U
D

A
TA

_S
H

R

 ;

 IN
T_

V
A

R
 is

 t
h

e
se

ct
io

n
 n

am
e

in
 A

cc
es

s
R

A
M

Fi
gu

re
 1

3
.1

 -
 R

eg
is

te
r

C
o

d
e

0
.1

.

David Piggott - iBantumi

46

LED Register Code Development - 0.1
w

_t
em

p

R

ES

 1

 ;

 v
ar

ia
b

le
 u

se
d

 f
o

r
co

n
te

xt
 s

av
in

g

st
at

u
s_

te
m

p
 R

ES

 1

 ;

 v
ar

ia
b

le
 u

se
d

 f
o

r
co

n
te

xt
 s

av
in

g
 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; E

EP
R

O
M

 IN
IT

IA
LI

ZA
TI

O
N

; ; T

h
e

1
6

F8
8

2
 h

as
 1

2
8

 b
yt

es
 o

f
n

o
n

-v
o

la
ti

le
 E

EP
R

O
M

, s
ta

rt
in

g
at

 a
d

d
re

ss
 0

x2
1

0
0

; ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-

 O
R

G

0
x2

1
0

0

 D

E

0
x0

0
, 0

x0
1

, 0
x0

2
, 0

x0
3

 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; R

ES
ET

 V
EC

TO
R

;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
 R

ES
ET

_V
EC

TO
R

 C

O
D

E
 0

x0
0

0
0

 g
o

to

 S
TA

R
T

; W
h

en
 u

si
n

g
d

eb
u

g
h

ea
d

er
, I

C
D

2
 m

ay
 n

o
t

st
o

p

; o
n

 in
st

ru
ct

io
n

 0
 d

u
ri

n
g

re
se

t.

 ;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

; I
N

TE
R

R
U

P
T

SE
R

V
IC

E
R

O
U

TI
N

E
;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
 IN

T_
V

EC
TO

R

 C

O
D

E
 0

x0
0

0
4

 ;
In

te
rr

u
p

t
V

ec
to

r
Lo

ca
ti

o
n

 g
o

to

 IN
TE

R
R

U
P

T
 P

R
O

G
R

A
M

 C

O
D

E
 IN

TE
R

R
U

P
T

 ;
 R

el
o

ca
ta

b
le

 In
te

rr
u

p
t

Se
rv

ic
e

R
o

u
ti

n
e

 ;

 C

o
n

te
xt

 s
av

in
g

fo
r

IS
R

 M
O

V
W

F
 w

_t
em

p

; s

av
e

o
ff

 c
u

rr
en

t
W

 r
eg

is
te

r
co

n
te

n
ts

 M
O

V
F

ST

A
TU

S,
w

 ;

m
o

ve
 s

ta
tu

s
re

gi
st

er
 in

to
 W

 r
eg

is
te

r

 M
O

V
W

F
 s

ta
tu

s_
te

m
p

 ;
sa

ve
 o

ff
 c

o
n

te
n

ts
 o

f
ST

A
TU

S
re

gi
st

er

 ;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

; S
A

M
P

LE
 IN

TE
R

R
U

P
T

SE
R

V
IC

E
R

O
U

TI
N

E
;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
 ;

 If
 t

h
e

in
te

rr
u

p
t

ca
m

e
fr

o
m

 t
h

e
ti

m
er

, e
xe

cu
te

 t
h

e
TM

R
0

in
te

rr
u

p
t

;

 s
er

vi
ce

 r
o

u
ti

n
e.

 T
h

is
 m

ay
 b

e
re

m
o

ve
d

 in
 a

d
d

it
io

n
 t

o
 t

h
e

sa
m

p
le

;

 p
ro

gr
am

 b
el

o
w

.
;

 B
TF

SC

IN
TC

O
N

, T
0

IF

; U
n

co
m

m
en

t
th

is
 li

n
e

to
 t

es
t

sa
m

p
le

 c
o

d
e

;

 C
A

LL

 T
M

R
0

_
IS

R

 ;

U
n

co
m

m
en

t
th

is
 li

n
e

to
 t

es
t

sa
m

p
le

 c
o

d
e

 ;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

; E
N

D
 O

F
SA

M
P

LE
 IN

TE
R

R
U

P
T

SE
R

V
IC

E
R

O
U

TI
N

E
;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-

David Piggott - iBantumi

47

LED Register Code Development - 0.1
;

 R
es

to
re

 c
o

n
te

xt
 b

ef
o

re
 r

et
u

rn
in

g
fr

o
m

 in
te

rr
u

p
t

 M

O
V

F

st
at

u
s_

te
m

p
,w

 ;

 r
et

ri
ev

e
co

p
y

o
f

ST
A

TU
S

re
gi

st
er

 M
O

V
W

F
 S

TA
TU

S

 ;
 r

es
to

re
 p

re
-i

sr
 S

TA
TU

S
re

gi
st

er
 c

o
n

te
n

ts

 S

W
A

P
F

 w
_t

em
p

,f

 S

W
A

P
F

 w
_t

em
p

,w

 ;
re

st
o

re
 p

re
-i

sr
 W

 r
eg

is
te

r
co

n
te

n
ts

 R
ET

FI
E

 ;
re

tu
rn

 f
ro

m
 in

te
rr

u
p

t
 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; M

A
IN

 P
R

O
G

R
A

M

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

 ST
A

R
T

 ;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

; S
ET

 O
SC

IL
LA

TO
R

 T
O

 F
A

C
TO

R
Y

FR
EQ

U
EN

C
Y

A
N

D
 C

LE
A

R
 G

P
R

's

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

 E

R
R

O
R

LE
V

EL
 -

30
2

 ;

 d
is

ab
le

 w
ar

n
in

g
ac

ce
ss

in
g

re
gi

st
er

 n
o

t
in

 b
an

k
0

 B
A

N
K

SE
L

O
SC

TU
N

E

 ;
se

le
ct

 b
an

k
1

 u
si

n
g

m
p

as
m

 m
ac

ro

 M

O
V

LW

0
x0

0

 ;

 s
et

 o
sc

ill
at

o
r

to
 f

ac
to

ry
 c

al
ib

ra
te

d
 f

re
q

u
en

cy

 M

O
V

W
F

 O
SC

TU
N

E

 B
A

N
K

SE
L

ST
A

TU
S

 ;

 s
el

ec
t

b
an

k
0

 u
si

n
g

m
p

as
m

 m
ac

ro
...

 S
TA

TU
S

is
 a

rb
it

ra
ry

 E
R

R
O

R
LE

V
EL

 +
3

02

 ;
 r

e
-e

n
ab

le
 w

ar
n

in
g

ac
ce

ss
in

g
re

gi
st

er
 n

o
t

in
 b

an
k

0

C
LE

A
R

_R
A

M

; c
o

d
e

se
q

u
en

ce
 in

it
ia

liz
es

 a
ll

G
P

R
's

 t
o

 0
x0

0

; u
n

n
ec

es
sa

ry
 if

 in
it

al
iz

in
g

al
l v

ar
ia

b
le

s
b

ef
o

re
 u

se

 M

O
V

LW

0
x2

0

 ;

 in
it

ia
liz

e
p

o
in

te
r

 M

O
V

W
F

 F
SR

; t

o
 R

A
M

N

EX
T

 C
LR

F

IN
D

F

 ;

cl
ea

r
IN

D
F

re
gi

st
er

 IN
C

F

FS
R

, F

; i

n
c

p
o

in
te

r

 B
TF

SS

FS
R

, 7

; a

ll
d

o
n

e?

 G

O
TO

 N

EX
T

 ;
n

o
 c

le
ar

 N
EX

T
C

O
N

TI
N

U
E

; y

es
 C

O
N

TI
N

U
E

 N

O
P

; S

et
 u

p
 p

re
sc

al
er

b
an

ks
el

O

P
TI

O
N

_R
EG

m
o

vl
w

B

'0
0

0
0

1
0

0
0

'
;S

et
 p

re
sc

al
er

 t
o

 o
n

e
(i

n
c

ev
er

y
m

ic
ro

se
co

n
d

)

m
o

vw
f

O
P

TI
O

N
_R

EG

In
it

:

b
an

ks
el

 C
o

u
n

t

cl
rf

C

o
u

n
t

b

an
ks

el

P
O

R
TA

cl
rf

P

O
R

TA

b

an
ks

el

A
N

SE
L

;

cl
rf

A

N
SE

L

;D

ig
it

al
 IO

b
an

ks
el

A

N
SE

LH

cl

rf

A
N

SE
LH

b
an

ks
el

P

O
R

TB

cl

rf

P
O

R
TB

David Piggott - iBantumi

48

LED Register Code Development - 0.1

b
an

ks
el

P

O
R

TC

cl

rf

P
O

R
TC

b
an

ks
el

TR

IS
A

cl
rf

TR

IS
A

b
an

ks
el

TR

IS
B

cl
rf

TR

IS
B

b
an

ks
el

TR

IS
C

cl
rf

TR

IS
C

m
o

vl
w

B

'0
0

0
0

1
0

0
0

'

b
an

ks
el

TR

IS
E

m

o
vw

f
TR

IS
E

go

to

Li
st

en

 re
se

tC
o

u
n

t:

b

an
ks

el

C
o

u
n

t

cl
rf

C

o
u

n
t

re

tu
rn

Li

st
en

:

m
o

vl
w

.2

5

b

an
ks

el

C
o

u
n

t

su
b

w
f C

o
u

n
t,

W

b

an
ks

el

ST
A

TU
S

b

tf
sc

ST

A
TU

S,
2

ca
ll

re

se
tC

o
u

n
t

b

an
ks

el

P
O

R
TE

b
tf

ss

P
O

R
TE

,3

go

to

Li
st

en

 Ti
m

er
:

;P
re

sc
al

er
 is

 d
iv

id
e

b
y

o
n

e.

b

an
ks

el

TM
R

0

cl

rf

TM
R

0

Lo
o

p
:

b

an
ks

el

P
O

R
TE

b
tf

sc

P
O

R
TE

,3

go

to

Lo
o

p

b

an
ks

el

TM
R

0

m

o
vf

w

TM
R

0

D
ec

is
io

n
:

b

an
ks

el

Ti
m

e

m
o

vw
f

Ti
m

e

;S
u

b
tr

ac
t

p
u

ls
e

le
n

gt
h

 f
ro

m
 6

3

su

b
lw

 .6
3

b
an

ks
el

ST

A
TU

S

b
tf

sc

ST
A

TU
S,

0
;I

f
an

sw
er

 is
 +

ve
/0

, p
u

ls
e

le
n

gt
h

 w
as

 le
ss

 t
h

an
/e

q
u

al
 t

o
 6

3

go

to

Sw
it

ch
O

n

;T
h

er
ef

o
re

 s
w

it
ch

 o
n

b
an

ks
el

Ti

m
e

m

o
vf

w

Ti
m

e

;S
u

b
tr

ac
t

p
u

ls
e

le
n

gt
h

 f
ro

m
 8

8

su

b
lw

 .8
8

b
an

ks
el

ST

A
TU

S

David Piggott - iBantumi

49

LED Register Code Development - 0.1

b
tf

sc

ST
A

TU
S,

0
;I

f
an

sw
er

 is
 +

ve
/0

, p
u

ls
e

le
n

gt
h

 w
as

 le
ss

 t
h

an
/e

q
u

al
 t

o
 8

8

go

to

Sw
it

ch
O

ff

;T
h

er
ef

o
re

 s
w

it
ch

 o
ff

m
o

vl
w

B

'0
0

0
0

0
0

0
1

' ;
El

se
, p

u
ls

e
w

as
 a

 s
ta

rt
 b

it
 -

 u
p

d
at

e
th

e
co

u
n

t

b
an

ks
el

C

o
u

n
t

m

o
vw

f
C

o
u

n
t

go

to

Li
st

en

 Sw
it

ch
O

n
:

cl

rw

b

an
ks

el

C
o

u
n

t

io
rw

f
C

o
u

n
t,

W

b

an
ks

el
 S

TA
TU

S

b
tf

sc

ST
A

TU
S,

2

go

to

Li
st

en

ca

ll
Se

tP
o

rt

b

an
ks

el

FS
R

m
o

vw
f

FS
R

ca
ll

Lo
o

ku
p

b
an

ks
el

IN

D
F

io

rw
f

IN
D

F,
1

b
an

ks
el

C

o
u

n
t

in

cf

C
o

u
n

t

go
to

Li

st
en

Sw

it
ch

O
ff

:

cl
rw

b
an

ks
el

C

o
u

n
t

io

rw
f

C
o

u
n

t,
W

b
an

ks
el

 S
TA

TU
S

b

tf
sc

ST

A
TU

S,
2

go
to

Li

st
en

ca
ll

Se
tP

o
rt

b
an

ks
el

FS

R

m

o
vw

f
FS

R

ca

ll
Lo

o
ku

p

m

o
vw

f
Te

m
p

co
m

f
Te

m
p

m
o

vf
w

Te

m
p

b
an

ks
el

IN

D
F

an

d
w

f I
N

D
F,

1

b

an
ks

el

C
o

u
n

t

in
cf

C

o
u

n
t

go

to

Li
st

en

Se
tP

o
rt

:

b
an

ks
el

C

o
u

n
t

m

o
vf

w

C
o

u
n

t

ad
d

w
f P

C
L

David Piggott - iBantumi

50

LED Register Code Development - 0.1

n
o

p

re

tl
w

 P
O

R
TA

;1

re

tl
w

 P
O

R
TA

;2

re

tl
w

 P
O

R
TA

;3

re

tl
w

 P
O

R
TA

;4

re

tl
w

 P
O

R
TA

;5

re

tl
w

 P
O

R
TA

;6

re

tl
w

 P
O

R
TA

;7

re

tl
w

 P
O

R
TA

;8

re

tl
w

 P
O

R
TB

;9

re

tl
w

 P
O

R
TB

;1
0

re
tl

w
 P

O
R

TB
;1

1

re

tl
w

 P
O

R
TB

;1
2

re
tl

w
 P

O
R

TB
;1

3

re

tl
w

 P
O

R
TB

;1
4

re
tl

w
 P

O
R

TB
;1

5

re

tl
w

 P
O

R
TB

;1
6

re
tl

w
 P

O
R

TC
;1

7

re

tl
w

 P
O

R
TC

;1
8

re
tl

w
 P

O
R

TC
;1

9

re

tl
w

 P
O

R
TC

;2
0

re
tl

w
 P

O
R

TC
;2

1

re

tl
w

 P
O

R
TC

;2
2

re
tl

w
 P

O
R

TC
;2

3

re

tl
w

 P
O

R
TC

;2
4

Lo

o
ku

p
:

b

an
ks

el

C
o

u
n

t

m
o

vf
w

C

o
u

n
t

ad

d
w

f P
C

L

n
o

p

re

tl
w

 B
'0

0
0

0
0

0
0

1
';1

re
tl

w
 B

'0
0

0
0

0
0

1
0

';2

re

tl
w

 B
'0

0
0

0
0

1
0

0
';3

re
tl

w
 B

'0
0

0
0

1
0

0
0

';4

re

tl
w

 B
'0

0
0

1
0

0
0

0
';5

re
tl

w
 B

'0
0

1
0

0
0

0
0

';6

re

tl
w

 B
'0

1
0

0
0

0
0

0
';7

re
tl

w
 B

'1
0

0
0

0
0

0
0

';8

re

tl
w

 B
'0

0
0

0
0

0
0

1
';9

re
tl

w
 B

'0
0

0
0

0
0

1
0

';1
0

re
tl

w
 B

'0
0

0
0

0
1

0
0

';1
1

re
tl

w
 B

'0
0

0
0

1
0

0
0

';1
2

re
tl

w
 B

'0
0

0
1

0
0

0
0

';1
3

re
tl

w
 B

'0
0

1
0

0
0

0
0

';1
4

re
tl

w
 B

'0
1

0
0

0
0

0
0

';1
5

re
tl

w
 B

'1
0

0
0

0
0

0
0

';1
6

re
tl

w
 B

'0
0

0
0

0
0

0
1

';1
7

re
tl

w
 B

'0
0

0
0

0
0

1
0

';1
8

re
tl

w
 B

'0
0

0
0

0
1

0
0

';1
9

re
tl

w
 B

'0
0

0
0

1
0

0
0

';2
0

David Piggott - iBantumi

51

LED Register Code Development - 0.1

re
tl

w
 B

'0
0

0
1

0
0

0
0

';2
1

re
tl

w
 B

'0
0

1
0

0
0

0
0

';2
2

re
tl

w
 B

'0
1

0
0

0
0

0
0

';2
3

re
tl

w
 B

'1
0

0
0

0
0

0
0

';2
4

 E
N

D

David Piggott - iBantumi

52

LED Register Code Development - 0.1

It almost goes without saying that the program didn’t work flawlessly (in fact at all) first time. I encountered several problems along the way
and so for this reason and the amount of pages required to include this version, I haven’t and will not include the program as it was at every
point before testing with the MPLAB SIM. The problem which delayed me the most however was with I/O.

I had already written a test program that switches on all twenty-four outputs so I could verify my prototyping PCB was working, so I shouldn't
really have had this problem but nevertheless it happened. The problem was with the init stage was as shown in figure 13.2. When I stepped
through the program using MPLAB SIM and providing stimulus on PORTE,3 with the stimulus workbook, I had set up the watch (figure 13.3)

with all the significant files used in the program, and strangely enough these changed (almost)
exactly as expected to indicate the program was functioning correctly, with the slight problem
that when it got to the output stage, PORTA,B and C simply wouldn’t change.

Init:
 banksel Count
 clrf Count
 banksel PORTA
 clrf PORTA
 banksel PORTB
 clrf PORTB
 banksel PORTC
 clrf PORTC
 banksel TRISA
 clrf TRISA
 banksel TRISB
 clrf TRISB
 banksel TRISC
 clrf TRISC
 movlw B'00001000'
 banksel TRISE
 movwf TRISE
 goto Listen

Figure 13.2 - Problematic init section Figure 13.3 - The Watch panel

David Piggott - iBantumi

53

LED Register Code Development - 0.1

At first I thought this must be due to a bug in MPLAB (as my experience with the PICKit 2 Programmer had told me - see ‘Problematic Pro-
gramming’), so I checked the Microchip website and indeed there was a new version available for download so I updated from 7.62 to 8.00,
and then again a few days later from 8.00 to 8.01. Neither of these updates solved the problems, and after having found neither mention of
nor solution for the problem via the Google search engine, I sent a support request to Microchip via http://support.microchip.com/ on the
22nd of December at 7:14 PM. Figure 13.6 overleaf shows the MPLAB WebTicket system with the description of the problem I gave and the
solution I received at on the 24th December at 10:52pm - this made a nice Christmas present when I checked my e-mail the following day!

The solution I was given shown in figure 11.4:

The problem was due to the fact that when writing the test program
to switch all the LEDs on I had been using example code so hadn’t
followed it entirely. This was made worse by the fact the datasheet
doesn’t document this; it only says the ANSEL register must be ini-
tialised to configure an analog channel as a digital input (see figure
13.5). It doesn’t mention outputs.

Some of these pins are shared with ADC moudle. The ANSEL register must be initialized to
configure an analog channel as a digital I/O.
e.g. ; initializing PORTA
BANKSEL PORTA ;
CLRF PORTA ;Init PORTA
BANKSEL ANSEL ;
CLRF ANSEL ;digital I/O
BCF STATUS,RP1 ;Bank 1
BANKSEL TRISA ;
MOVLW 0Ch ;Set RA<3:2> as inputs
MOVWF TRISA ;and set RA<5:4,1:0>

Figure 13.5 - PIC16F822 Datasheet I/O Ports section

Figure 13.4 - Resolution returned

http://support.microchip.com/

David Piggott - iBantumi

54

Figure 13.6 - MPLAB WebTicket System with description I gave and resolution returned.

LED Register Code Development - 0.1

David Piggott - iBantumi

55

LED Register Code Development - 0.1

This wasn’t the only problem I had with outputs. When I had overcome this problem, I
encountered another similar issue except that it was only effecting the six least signifi-
cant bits of PORTB, which simply would not switch on. Suspecting a similar cause to
that of the first problem, I navigated to the section of the datasheet on PORTB and
found information shown in figure 13.7.

Therefore in order to solve the two output problems I added the code in figure 13.8 to
the init(ialisation) routine:

It would be extremely counterproductive for me to spend my time documenting how the register code works instruction by instruction, so
three more items remain before the documentation of 0.1 is complete:
 Necessary additions
 General flowchart
 In circuit testing

One necessary feature is missing from 0.1; support for multiple registers. To simplify the programming for this early version I omitted this. The
way this works will be explained in greater detail as when I implement it.

Because I am not documenting instruction by instruction how the program works I have created a flowchart included overleaf (figure 13.9)
summarising how the register code works.

Figure 13.7 - ANSELH Register information

 banksel ANSEL
 clrf ANSEL
 banksel ANSELH
 clrf ANSELH

Figure 13.8 - Addition to init

David Piggott - iBantumi

56

Start

Init:

Set up I/O ports

and prescaler

Listen:

Is count = 25?

Listen:

Is PORTE,3

high?

No

resetCount:

Let count = 0
Yes

No

Timer:

Clear TMR0

Timer:

Is PORTE,3

low?

Yes

No

Decision:

Is Time ≤

63µs?

Decision:

Is Time ≤

88µs?

Yes

Initialise count:

Let count = 1
No

SwitchOff:

Is count != 0?

SwitchOn:

Is count != 0?

Yes

Yes

goto Listen

NoNo

No

SwitchOn:

call SetPort and

set FSR to

returned value

SwitchOn:

call Lookup and

OR returned value

with INDF

SwitchOn:

Inc Count

Yes

SwitchOff:

call SetPort and

set FSR to

returned value

SwitchOff:

call Lookup and

complement

returned value

SwitchOff:

AND complement

of returned value

with INDF

SwitchOff:

Inc Count

Yes

LED Register Code Development - 0.1

Figure 13.9 - Summary flowchart of 0.1

David Piggott - iBantumi

57

Problematic Programming

At this stage, I now have in my inventory the following:
 1x PICKit 2 Programmer
 1x PICKit 2 Demo Board with a PIC16F690
 20x PIC16F882s (they were transported by air so arrived within a week

of ordering!)
 1x PIC18F252
 1x Register Development PCB (produced from the respective artwork,

version 0.2) (tracked for a PIC16F882)
 Some experience with assembly code, as I have looked at the example

programs included with the PICKit 2

Prior to creating the register development PCB, I had successfully pro-
grammed (i.e. had the PICKit 2 software communicate successfully with the
chip):

A PIC16F690 in the demo board
 and
a PIC18F252 in breadboard

However, when I attempted to program a PIC16F882 in breadboard, I re-
ceived an error message (see figure 14.0). After having checked (more than
three times) my interpretation of the programming requirements, the sche-
matic, the artwork, the actual PCB, and all the necessary voltages (Vpp,
ICSPData, ICSPClock, Vdd and Vss), I was pretty convinced that the issue was
not a hardware issue.

However, based on the fact that the programmer continued to communicated
successfully with the PICKit 2 Demo board, it seemed that the programmer Figure 14.0 - Programming Error

David Piggott - iBantumi

58

Problematic Programming

and software could not be the problem either. As a last check, I also used an oscilloscope to
check a 30KHz signal on the ICSP clock and data lines (the PICKit 2 software has a trouble-
shooting feature that allows you to output a square wave to these), and found these to be
functioning correctly too.

The next step after having verified that all the hardware was correctly functioning was to
check the Microchip website and knowledge base to see if this has been a common prob-
lem. In doing so I found that there is a newer version of the programmer software (2.11 was
included on the CD, 2.40 was now available on the website) and firmware available for
download than that included on the CD with the PICKit 2. I downloaded and installed these
and found this solved the problem! To the left and below are pictures of the PICkit 2 demo
board, breadboard, and register development PCB (see ‘Unit Register Artwork 0.1’) that I
tried programming in: Figure 14.1 - PICKit 2 Demo Board

Figure 14.2 - Breadboard setup Figure 14.3 - Register development PCB

David Piggott - iBantumi

59

Development Dependencies

One of the challenges with this project is the issue of modelling and prototyping due to the vast quantity of LEDs it will use and PICmicro regis-
ters. Even when developing the LED register controller code, I had difficulty programming the PIC16F822 in breadboard and so resorted to
creating an artwork and PCB solely for the purpose of developing the program.

Developing the main game logic code will be yet more challenging. In order to test it properly I will really need the hardware it will be running
on available to me, so I can see where the seeds are (i.e. which LEDs are lit) and interact with the program by means of the pit buttons. The
point I’m making is that before I can do much/any work on the master controlling code, I will need to create the schematics and artworks and
produce the PCBs, so I can test it in the target application.

I have already breadboarded basic PICmicro circuits successfully aswell as created the register development board so am familiar with the op-
erating circuits for PICmicros. This is fortunate because it will not be practical to breadboard the artworks and thus PCBs I will be producing
due to their shear size and component count. For the same reasons, it is very important that I get the PCBs right first time as any errors could
be very costly both in terms of time and money. I shall therefore endeavour to implement as much error checking into my work as possible
when I design the schematics and artworks.

With the reasons explained, it is now that I can say I have not adhered to the development timeplan that is figure x.x. My actual use of time is
explained in the section at the end titled “Time Usage”.

David Piggott - iBantumi

60

Unit Register Schematic 0.1

Figure 15.0 shows the LED register schematic.
Included in this version is the ICSP (in circuit
serial programming) setup, since this schematic
will be the base for my program development.

Specifically which pin on the PIC16F882 each
LED connects to is not of any significance, and
this is likely to change when I create the art-
work, to make the routing more efficient. How-
ever it will mean that I will have to alter the
program.

D3 and D4 are connected to pins 27 and 28 re-
spectively; which also function as the ICSP
clock and data lines during programming.

Figure 15.0 - LED Register Schematic

David Piggott - iBantumi

61

Unit Register Artwork 0.1

 Figure 16.0, Unit Register Artwork 0.1 is the artwork for a single LED register and is based on LED register schematic 0.1. It is the artwork I cre-
ated the register development PCB (figure 13.3) from and that I am using for register code development. Because it was designed for develop-
ment work it includes ICSP connectivity; the production register artworks will not. For the same reason there is no on board power regulation
as it is powered by the PICKit 2 programmer when connected. Figure 16.1 is the coding key.

On completion of any artworks I create, I always colour code them. This offers sev-
eral benefits:
 The link between schematic and artwork is clearer to viewers unfamiliar with
the circuit (i.e. readers of this documentation).
 In going through the colour coding process, I almost always spot at least one
error with the artwork and thus it is a great time saver; I would otherwise only dis-
cover these errors after having produced the PCB and found it to not work.

The colour coding process is simple:
1. I press Ctrl-A and then Ctrl-C in PCB Wizard to select
the entire work and copy to the clipboard.
2. I open the Microsoft Paint program and paste the
artwork into it.
3. Using the fill tool, I change the colour of every track
on the board based on it’s function.

While fine as a development board, I did not spend any
time on space optimisation with register artwork 0.1 and
so it is not suitable as a production board because it is
simply too large for me to be able to meet the specifica-
tion points on case size. Therefore it was necessary for
me to create smaller register artworks. Figure 16.0 - Unit Register Artwork 0.1 - Colour coded

 Output to LED

 0v

 +5v

 Serial control line

 Programming
clock and data
lines

 Vpp Programming
enable voltage

Figure 16.1 - Coding key

David Piggott - iBantumi

62

Unit Register Artwork 0.2

In order to make the register artworks as
small as possible, I created register art-
work 0.2 as a dual layer artwork, as seen
above, so I could get an idea of how much
of an advantage making dual layer boards
would be.

Figure 17.0 - Unit Register Art-
work 0.2

Figure 17.1 - Unit Register Art-
work 0.2 - Colour coded

 +5v

 0v

 Serial control line

Figure 17.4 - Coding key

Figure 17.2 - Unit Register Art-
work 0.2 - Solder side

Figure 17.3 - Unit Register Art-
work 0.2 - Component side

 Solder side output
track to LED

 Component side
output track to
LED

David Piggott - iBantumi

63

Unit Register Artwork 0.3

Figure 18.0 - Unit Regis-
ter Artwork 0.2

Figure 18.1 - Unit Regis-
ter Artwork 0.2 - Colour
coded

 +5v

 0v

 Serial control line

Figure 18.4 - Coding key

 Solder side output
track to LED

 Component side
output track to
LED

Artwork 0.3 is even more ambitious than
artwork 0.2; not only is it dual layer, but I
reduced the track size to 0.02” from
0.04” (default) and the track spacing to
0.05” from 0.1” (default). This enables
more tracks to run parallel to each other in
a given space, and for tracks to run be-
tween the pads of LEDs!

When I created artwork 0.2 and 0.3, I
knew creating dual layer PCBs with the
school equipment would be a challenge. I
continued with the artwork creation any-
way so I could see exactly how much
smaller I could make the artworks. I will
not however be producing dual layer PCBs
on only one board.

Figure 18.2 - Unit Regis-
ter Artwork 0.2 - Solder
side

Figure 18.3 - Unit Regis-
ter Artwork 0.2 - Compo-
nent side

David Piggott - iBantumi

64

Schematic & Artwork Set 0.1 - Game Logic

As discussed in the task analysis, the board features dual power sup-
plies; battery and low voltage DC from the mains. I have included a
bridge rectifier because for their low cost (compared overall project
cost) they offer protection to the other components against incorrect
battery/power supply polarity. The voltage regulator on this sche-
matic/board powers only the game logic components and peripherals
such as the buzzer and LCD. The on/off switch is connected to the
PICmicro and toggles the software status; on power down the game
state is saved and the PICmicro enters low power sleep mode. An inter-
rupt is set on the on/off switch port (it is connected to this specific pin
for a reason as on the PIC18F252 this pin supports interrupts).
A MOSFET controls power to the pit board registers allowing them to
be completely switched off when the board is off.

Figure 19.1 - Game Logic Artwork 0.1 - Colour Coded

Figure 19.0 - Game Logic Schematic 0.1

 Power supply

 0v

 Unregulated +V

 +5v

 Input

 Output

 Programming clock and data lines

 Vpp Programming enable voltage

Figure 19.2 - Coding key

David Piggott - iBantumi

65

Schematic & Artwork Set 0.1 - Menu Buttons & Routing Board

Power provided by the game logic board to
the pit board registers is unregulated, so a
regulator is included on this ‘routing board’.

Figure 20.0 - Menu Buttons Schematic 0.1 Figure 20.1 - Menu Buttons Artwork 0.1 - Colour Coded

Figure 20.3 - Routing Board Schematic 0.1 Figure 20.4 - Routing Board Artwork 0.1 - Colour Coded

 0v Input

 Unregulated +V Output

 +5v Figure 20.2 - Coding key

David Piggott - iBantumi

66

Schematic & Artwork Set 0.1 - Pit Buttons & Registers

The pit buttons (12 in number) and menu buttons (4 in number) are
connected in an array setup to the game logic PICmicro, and since there
are 16 in total this can be catered for with a 4 x 4 array. This is divided
into two sub arrays; a 3 x 4 for the pit buttons, and a 1 x 4 for the menu
buttons.

Figure 21.0 - Pit Buttons Schematic 0.1

Figure 21.1 - Register Schematic 0.1

David Piggott - iBantumi

67

Schematic & Artwork Set 0.1 - Board Artwork Upper Layer

Figure 22.0 - Board Artwork Upper Layer 0.1 - Colour Coded

David Piggott - iBantumi

68

Schematic & Artwork Set 0.1 - Board Artwork Lower Layer

Figure 23.0 - Board Artwork Lower Layer 0.1 - Colour Coded

David Piggott - iBantumi

69

Schematic & Artwork Set 0.1 - Evaluation

Figure 24.0 is the coding key to be used with the board artwork upper and lower layers.

As with unit register artworks 0.2 and 0.3, I will not be producing PCBs from schematic and artwork set 0.1. However for the sake of documen-
tation completeness they are included here. The reason for not producing PCBs from them is that the development of the schematics and art-
works was a parallel process; that is to say, the actual circuit changed while I was routing the artworks and so the layouts are not optimal, so
much so that I had to create a ‘routing board’ to facilitate interconnections between the pit boards and the game logic board. The imperfec-
tions can be summarised as follows:
 Insufficient thought given to the power supply and power management
 Non-optimal use of space
 An unnecessary ‘routing board’ was required because I designed the pit boards after the game logic board
 Difficulty could result when trying to connect the upper and lower pit boards due to insufficient planning of interconnection (lots and

lots and lots of SIL connections!)
 Insufficient thought given to the positioning of the PCBs within the case

I intend to fix all the imperfections in set 0.1 when I create set 0.2 as I hope to create the PCB set from this. However one significant develop-
ment with artwork set 0.1 is that the board artworks are suitably compact without having resorted to conventional dual layer boards, or im-
practical track widths and spacing.

Also worth noting at this point is that all artworks are included in this documentation at the same scale as they would be on PCB.

 0v

 +5v

 Input

 Output

Figure 24.0 - Coding key

David Piggott - iBantumi

70

Case Plan - Component Locations Draft

Plan View

Upper PCBs
(LEDs and
switches)

Lower PCBs
(PIC16F882
registers &
power supply)

Dual 6V battery
boxes

Menu buttons

Player two
pit board

Player one
pit board

Menu buttons

LCD module

LCD module

Figure 25.0 - Component Locations Draft - Plan View

Figure 25.1 - Component Locations Draft - Side View

Game Logic
Board
(PIC18F252)

David Piggott - iBantumi

71

Schematic & Artwork Set 0.2 - Game Logic & Button Schematics

As a system wide change,
the power supply is now
split up into parts for each
board; the game logic
board has its own bridge
rectifier and voltage regula-
tor, designed to provide up to 1A. As with game logic
schematic 0.1, the LCD power is controlled directly by
the PIC with no intermediate transistor, based on the
fact the current requirement for the LCD module is
specified as 5mA.

More of the menu/pit button routing is done on the
game logic board, negating the need for a separate
routing board.

As part of the power supply redesign, the LED registers

have their own onboard power systems designed to accept either polarity, so
in order to avoid having large bridge rectifiers on the game logic board, power
to the register boards is controlled by a DPDT relay (because in this setup it is
non polar, whereas a MOSFET as used before would be, unless I had used two
in inverse parallel, but having not done this before I didn’t want the risk of it
not working).

Because of the voltage drops across bridge rectifiers and voltage regulators,
and because of the high estimated current consumption of the finished prod-
uct, I have upgraded the power supply to 12V (transformed mains or batteries).

Figure 26.1 - Game Logic Schematic 0.2

Figure 26.0 - Menu But-
tons Schematic 0.2

Figure 26.3 - Pit Buttons Schematic 0.2

David Piggott - iBantumi

72

Schematic & Artwork Set 0.2 - LED Register Schematic

As with schematic set 0.1, the pit boards will be split by player
number; one for player one, one for player two. Based on my
estimate of 4.2A (168 x 25mA = 4.2A), I have provisioned for 4A
per player; although only 24 LEDs should only ever be on in
gameplay, it makes sense to provision for more should I have
spare time/program memory one the core game logic is pro-
grammed to add some visual effects for when a player wins etc.

This is provided by means of a 8A bridge rectifier on each board,
and a pair of 2A 7805 5V regulators in parallel. On each board
there are then seven pits powered from this; six standard (red or
blue depending on player) and one mancala (white).

The schematic in figure 27.0 shows only one register, and the
mapping between LED and PICmicro pins are arbitrary (that is to
say, they differ on the artworks, and I chose them based on most
efficient routing).

Figure 27.0 - LED Register Schematic 0.2

David Piggott - iBantumi

73

Schematic & Artwork Set 0.2 - Game Logic & Menu Buttons

Figure 28.2 - Game Logic Artwork 0.2

Figure 28.0 - Menu Buttons
Artwork 0.2

 Power Supply

 Relay Controlled Register
Power Supply

 0v

 Unregulated +V

 +5v

 Input

 Output

 Programming clock and data
lines

 Vpp Programming enable volt-
age

Figure 28.3 - Coding key

Figure 28.1 - ICSP
Case mounting
socket

David Piggott - iBantumi

74

Schematic & Artwork Set 0.2 - Player One Lower Artwork

Figure 29.1 - Player One Lower Artwork 0.2

 Relay Controlled Register Power Supply

 0v

 Unregulated +V

 +5v

 Input

 Output

Figure 29.0 - Coding key

David Piggott - iBantumi

75

Schematic & Artwork Set 0.2 - Player One Upper Artwork

Figure 30.1 - Player One Upper Artwork 0.2

 0v

 Input

 Output

Figure 30.0 - Coding key

David Piggott - iBantumi

76

Schematic & Artwork Set 0.2 - Player Two Lower Artwork

Figure 31.0 - Player Two Lower Artwork 0.2

 Relay Controlled Register Power Supply

 0v

 Unregulated +V

 +5v

 Input

 Output

Figure 31.1 - Coding key

David Piggott - iBantumi

77

Schematic & Artwork Set 0.2 - Player Two Upper Artwork

Figure 32.0 - Player Two Upper Artwork 0.2

 0v

 Input

 Output

Figure 32.1 - Coding key

David Piggott - iBantumi

78

Schematic & Artwork Set 0.2 - Evaluation

I noted the flaws with schematic & artwork set 0.1 as being the following:
 Insufficient thought given to the power supply and power management
 Non-optimal use of space
 An unnecessary ‘routing board’ was required because I designed the pit boards after the game logic board
 Difficulty could result when trying to connect the upper and lower pit boards due to insufficient planning of interconnection (lots and

lots and lots of SIL connections!)
 Insufficient thought given to the positioning of the PCBs within the case
Resolutions:
 I have now fixed the majority of these. Power to the register boards is controlled by a relay, which is driven by a transistor from the PIC.

Once at the register boards it passes through a bridge rectifier (to protect against incorrect polarity) and then a pair of 2A rated 7805 5V
regulators in parallel, allowing for current of up to 4A; there are 168 LEDs on each board, and assuming current flow of 25mA per LED
this is 4200mA or 4.2A. Although in gameplay only 24 LEDs will ever be lit at once, it is good practise to provide greater capacity. Be-
cause of the voltage drops across the bridge rectifiers and voltage regulators, 2x 4x AA battery boxes will be required (12V)

 I have endeavoured to make the register boards as small as is practical, and this has proved sufficient as it will allow the case to be sub
laptop-size. I did not invest a great deal of time in making the game logic board as small as possible because I would still be constrained
by the size of the register boards, so it would be a wasted effort.

 No ‘routing board’ is required with this set, so that issue has been fixed.
 I haven’t been able to reduce the number of PCB interconnects significantly because they are required in this dual layer setup, and any

other design would be orders of magnitude larger.
 I have planned out the location of all boards and components in the case, and designed the PCBs to work with this design (documented

prior to this schematic and artwork set 0.2 section).

After having exposed, developed and etched the game logic board, the two lower boards, and having completed drilling the game logic and
menu button boards, I realised that the pads I had used in the artworks were too small, because as the drill bit wore out, the pads were get-
ting more and more destroyed each time. I remedied this by increasing the pad sizes and starting again. An unfortunate waste of time, re-
sources and money, but I believe it makes more sense to stop and start again here than later down the line after having spent more time on it.
Rather than calling this one version 0.3, I have updated 0.2 because I consider this a minor fix, and it saves an extra unnecessary ten pages.

David Piggott - iBantumi

79

Pit numbers, LED Mappings & Switch Array Addresses

In preparation for the game logic and register programming,
I have allocated numbers to the pits; player one’s are 1-7,
with seven being the mancala, and player two’s are 8-14,
with fourteen being the mancala. This is shown in figure
33.0.

This was also necessary for the LEDs on the pit boards, so
that register code 0.2 can be written such that the first bit
turns on the first LED, and the second bit turns on the sec-
ond LED etc. (otherwise the ordering would appear random
due to the tracking and arrangement of IO on the 16F882).

The pit board buttons and menu buttons are arranged in a
four by four array. A three by four segment of this is for the
pit buttons (twelve in total) and one by four segment for the
menu buttons (four in total). Figure 33.2 shows the address
of each button.

1 - RC4 2 - RC7 3 - RC3 4 - RC2

5 - RC6 6 - RC5 7 - RC1 8 - RC0

9 - RB1 10 - RB0 11 - RA6 12 - RA7

13 - RB3 14 - RB2 15 - RA5 16 - RA4

17 - RB5 18 - RB4 19 - RA3 20 - RA2

21 - RB7 22 - RB6 23 - RA1 24 - RA0

14 13 12 11 10 9 8

 1 2 3 4 5 6 7

 RC1 RC2 RC3 RC4

RC5 Pit 10 Pit 11 Pit 9 Menu 4

RC6 Pit 14 Pit 12 Pit 13 Menu 3

RC7 Pit 3 Pit 1 Pit 2 Menu 2

RB1 Pit 6 Pit 4 Pit 5 Menu 1

Figure 33.0 - Pit Numbers table

Figure 33.1 - LED Mappings table

Figure 33.2 - Switch array addresses table

David Piggott - iBantumi

80

LED Register Code Development - 0.2
;*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
;

*
;

 F
ile

n
am

e:

1

6
F8

82
 R

eg
is

te
r

C
o

d
e

*

;
 F

ile
 V

er
si

o
n

:

0
.2

*

;

*

;
 A

u
th

o
r:

D

av
id

 P
ig

go
tt

*

;
 C

o
m

p
an

y:

p

ig
go

tt
.m

e.
u

k

*

;

*

;*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

 L

IS
T

 p

=1
6

F8
8

2

; l

is
t

d
ir

ec
ti

ve
 t

o
 d

ef
in

e
p

ro
ce

ss
o

r

 #
IN

C
LU

D
E

<p
16

F8
8

2
.in

c>

 ;

 p
ro

ce
ss

o
r

sp
ec

if
ic

 v
ar

ia
b

le
 d

ef
in

it
io

n
s

 _

_C
O

N
FI

G
 _

C
O

N
FI

G
1

, _
LV

P
_O

FF
 &

 _
FC

M
EN

_O
FF

 &
 _

IE
SO

_O
FF

 &
 _

B
O

R
_O

FF
 &

_C

P
D

_O
FF

 &
 _

C
P

_O
FF

 &
 _

M
C

LR
E_

O
FF

 &
 _

P
W

R
TE

_O
N

 &
 _

W
D

T_
O

FF
 &

_I

N
TR

C
_O

SC
_N

O
C

LK
O

U
T

 _
_C

O
N

FI
G

 _
C

O
N

FI
G

2
, _

W
R

T_
O

FF
 &

 _
B

O
R

4
0

V

 ; '
__

C
O

N
FI

G
' d

ir
ec

ti
ve

 is
 u

se
d

 t
o

 e
m

b
ed

 c
o

n
fi

gu
ra

ti
o

n
 w

o
rd

 w
it

h
in

 .a
sm

 f
ile

.
; T

h
e

la
b

le
s

fo
llo

w
in

g
th

e
d

ir
ec

ti
ve

 a
re

 lo
ca

te
d

 in
 t

h
e

re
sp

ec
ti

ve
 .i

n
c

fi
le

.
; S

ee
 d

at
a

sh
ee

t
fo

r
ad

d
it

io
n

al
 in

fo
rm

at
io

n
 o

n
 c

o
n

fi
gu

ra
ti

o
n

 w
o

rd
 s

et
ti

n
gs

.
; N

o
te

 t
h

at
 t

h
e

_D
EB

U
G

_O
N

 is
 c

h
an

ge
d

 b
y

se
le

ct
in

g
a

d
eb

u
gg

er
 o

r
p

ro
gr

am
m

er
.

; T

h
er

e
is

n
't

 m
u

ch
 a

d
va

n
ta

ge
 t

o
 s

et
ti

n
g

it
 in

 t
h

e
co

d
e.

 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; ; V

ar
ia

b
le

 D
ef

in
it

io
n

s
; ; A

va
ila

b
le

 D
at

a
M

em
o

ry
 (

al
so

 R
A

M
)

is
 d

iv
id

ed
 in

to
 4

 B
an

ks
.

Sp
ec

ia
l F

u
n

ct
io

n

; R
eg

is
te

rs
, G

en
er

al
 P

u
rp

o
se

 R
eg

is
te

rs
, a

n
d

 A
cc

es
s

R
eg

is
te

rs
 a

re
 s

h
o

w
n

 b
el

o
w

:
; ;

B

an
k

0

 B

an
k

1

 B

an
k

2

B
an

k
3

; S

FR

 0

x0
0

-0
x1

F

0x
80

-0
x9

F

0
x1

0
0

-0
x1

0
F

0

x1
80

-0
x1

8
D

; G

P
R

 0
x2

0
-0

x7
F

0x

A
0

-0
xB

F

-

 -

; A

C
C

ES
S

0

x7
0

-0
x7

F

0
xF

0
-0

xF
F

0

x1
7

0
-0

x1
7

F

0
x1

F0
-0

x1
FF

; ; T

h
e

A
cc

es
s

B
an

k
R

eg
is

te
rs

 a
re

 m
u

tu
al

 a
cr

o
ss

 e
ac

h
 a

d
d

re
ss

 s
p

ac
e.

; ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
 ; U

D
A

TA
 d

ec
la

re
s

a
se

ct
io

n
 o

f
u

n
in

it
ia

liz
ed

 d
at

a
V

A
R

IA
B

LE
S

 U
D

A
TA

 ;

 V
A

R
IA

B
LE

S
is

 t
h

e
n

am
e

o
f

th
e

se
ct

io
n

 o
f

m
em

o
ry

p

u
ls

eL
en

gt
h

 R
ES

 1

 ;
u

n
in

it
ia

liz
ed

 d
at

a,
 p

la
ce

d
 b

y
lin

ke
r

in
 G

P
R

's
.

p
u

ls
eC

o
u

n
t

R
ES

 1

p

it
ID

R
ES

1
p

it
C

o
u

n
t

R
ES

1
m

as
kC

o
m

p

R
ES

1
 Fi

gu
re

 3
4

.0
 -

 R
eg

is
te

r
C

o
d

e
0

.2

David Piggott - iBantumi

81

LED Register Code Development - 0.2
; U

D
A

TA
_S

H
R

 d
ec

la
re

s
a

se
ct

io
n

 o
f

sh
ar

ed
 (

ac
ro

ss
 a

ll
b

an
ks

)
u

n
in

it
ia

liz
ed

 d
at

a
IN

T_
V

A
R

 U

D
A

TA
_S

H
R

 ;
 IN

T_
V

A
R

 is
 t

h
e

se
ct

io
n

 n
am

e
in

 A
cc

es
s

R
A

M

w
_t

em
p

R
ES

 1

 ;
 v

ar
ia

b
le

 u
se

d
 f

o
r

co
n

te
xt

 s
av

in
g

st

at
u

s_
te

m
p

 R
ES

 1

 ;
 v

ar
ia

b
le

 u
se

d
 f

o
r

co
n

te
xt

 s
av

in
g

 ;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

; E
EP

R
O

M
 IN

IT
IA

LI
ZA

TI
O

N

; ; T
h

e
1

6
F8

8
2

 h
as

 1
2

8
 b

yt
es

 o
f

n
o

n
-v

o
la

ti
le

 E
EP

R
O

M
, s

ta
rt

in
g

at
 a

d
d

re
ss

 0
x2

1
0

0

; ;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

 O

R
G

0

x2
1

0
0

 D
E

0

x0
0

, 0
x0

1
, 0

x0
2

, 0
x0

3

 ;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

; R
ES

ET
 V

EC
TO

R

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

 R
ES

ET
_V

EC
TO

R

 C
O

D
E

 0
x0

0
0

0

 g

o
to

 S

TA
R

T

; W

h
en

 u
si

n
g

d
eb

u
g

h
ea

d
er

, I
C

D
2

 m
ay

 n
o

t
st

o
p

; o

n
 in

st
ru

ct
io

n
 0

 d
u

ri
n

g
re

se
t.

 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; I

N
TE

R
R

U
P

T
SE

R
V

IC
E

R
O

U
TI

N
E

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

 IN
T_

V
EC

TO
R

 C
O

D
E

 0
x0

0
0

4
 ;

In
te

rr
u

p
t

V
ec

to
r

Lo
ca

ti
o

n

 g

o
to

 IN

TE
R

R
U

P
T

 P
R

O
G

R
A

M

 C
O

D
E

 IN
TE

R
R

U
P

T

 ;

 R
el

o
ca

ta
b

le
 In

te
rr

u
p

t
Se

rv
ic

e
R

o
u

ti
n

e
 ;

 C
o

n
te

xt
 s

av
in

g
fo

r
IS

R

 M

O
V

W
F

 w
_t

em
p

; s
av

e
o

ff
 c

u
rr

en
t

W
 r

eg
is

te
r

co
n

te
n

ts

 M

O
V

F

ST
A

TU
S,

w

 ;
m

o
ve

 s
ta

tu
s

re
gi

st
er

 in
to

 W
 r

eg
is

te
r

 M

O
V

W
F

 s
ta

tu
s_

te
m

p

 ;

sa
ve

 o
ff

 c
o

n
te

n
ts

 o
f

ST
A

TU
S

re
gi

st
er

 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; S

A
M

P
LE

 IN
TE

R
R

U
P

T
SE

R
V

IC
E

R
O

U
TI

N
E

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

 ;

 If

 t
h

e
in

te
rr

u
p

t
ca

m
e

fr
o

m
 t

h
e

ti
m

er
, e

xe
cu

te
 t

h
e

TM
R

0
in

te
rr

u
p

t

;

 s

er
vi

ce
 r

o
u

ti
n

e.
 T

h
is

 m
ay

 b
e

re
m

o
ve

d
 in

 a
d

d
it

io
n

 t
o

 t
h

e
sa

m
p

le

;

 p

ro
gr

am
 b

el
o

w
.

;

 B

TF
SC

IN

TC
O

N
, T

0
IF

; U

n
co

m
m

en
t

th
is

 li
n

e
to

 t
es

t
sa

m
p

le
 c

o
d

e

;

 C

A
LL

 T

M
R

0
_

IS
R

 ;
U

n
co

m
m

en
t

th
is

 li
n

e
to

 t
es

t
sa

m
p

le
 c

o
d

e

 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; E

N
D

 O
F

SA
M

P
LE

 IN
TE

R
R

U
P

T
SE

R
V

IC
E

R
O

U
TI

N
E

David Piggott - iBantumi

82

LED Register Code Development - 0.2
;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
 ;

 R
es

to
re

 c
o

n
te

xt
 b

ef
o

re
 r

et
u

rn
in

g
fr

o
m

 in
te

rr
u

p
t

 M

O
V

F

st
at

u
s_

te
m

p
,w

 ;

 r
et

ri
ev

e
co

p
y

o
f

ST
A

TU
S

re
gi

st
er

 M
O

V
W

F
 S

TA
TU

S

 ;
 r

es
to

re
 p

re
-i

sr
 S

TA
TU

S
re

gi
st

er
 c

o
n

te
n

ts

 S

W
A

P
F

 w
_t

em
p

,f

 S

W
A

P
F

 w
_t

em
p

,w

 ;
re

st
o

re
 p

re
-i

sr
 W

 r
eg

is
te

r
co

n
te

n
ts

 R
ET

FI
E

 ;
re

tu
rn

 f
ro

m
 in

te
rr

u
p

t
 ;-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
; M

A
IN

 P
R

O
G

R
A

M

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

 ST
A

R
T

 ;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

; S
ET

 O
SC

IL
LA

TO
R

 T
O

 F
A

C
TO

R
Y

FR
EQ

U
EN

C
Y

A
N

D
 C

LE
A

R
 G

P
R

's

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

 E

R
R

O
R

LE
V

EL
 -

30
2

 ;

 d
is

ab
le

 w
ar

n
in

g
ac

ce
ss

in
g

re
gi

st
er

 n
o

t
in

 b
an

k
0

 B
A

N
K

SE
L

O
SC

TU
N

E

 ;
se

le
ct

 b
an

k
1

 u
si

n
g

m
p

as
m

 m
ac

ro

 M

O
V

LW

0
x0

0

 ;

 s
et

 o
sc

ill
at

o
r

to
 f

ac
to

ry
 c

al
ib

ra
te

d
 f

re
q

u
en

cy

 M

O
V

W
F

 O
SC

TU
N

E

 B
A

N
K

SE
L

ST
A

TU
S

 ;

 s
el

ec
t

b
an

k
0

 u
si

n
g

m
p

as
m

 m
ac

ro
...

 S
TA

TU
S

is
 a

rb
it

ra
ry

 E
R

R
O

R
LE

V
EL

 +
3

02

 ;
 r

e
-e

n
ab

le
 w

ar
n

in
g

ac
ce

ss
in

g
re

gi
st

er
 n

o
t

in
 b

an
k

0

C
LE

A
R

_R
A

M

; c
o

d
e

se
q

u
en

ce
 in

it
ia

liz
es

 a
ll

G
P

R
's

 t
o

 0
x0

0

; u
n

n
ec

es
sa

ry
 if

 in
it

al
iz

in
g

al
l v

ar
ia

b
le

s
b

ef
o

re
 u

se

 M

O
V

LW

0
x2

0

 ;

 in
it

ia
liz

e
p

o
in

te
r

 M

O
V

W
F

 F
SR

; t

o
 R

A
M

N

EX
T

 C
LR

F

IN
D

F

 ;

cl
ea

r
IN

D
F

re
gi

st
er

 IN
C

F

FS
R

, F

; i

n
c

p
o

in
te

r

 B
TF

SS

FS
R

, 7

; a

ll
d

o
n

e?

 G

O
TO

 N

EX
T

 ;
n

o
 c

le
ar

 N
EX

T
C

O
N

TI
N

U
E

; y

es
 C

O
N

TI
N

U
E

 N

O
P

; S

et
 u

p
 p

re
sc

al
er

b
an

ks
el

O

P
TI

O
N

_R
EG

;S
et

 p
re

sc
al

er
 t

o
 o

n
e

(i
n

c
ev

er
y

m
ic

ro
se

c-
o

n
d

)

m
o

vl
w

B

'0
0

0
0

1
0

0
0

'

m
o

vw
f

O
P

TI
O

N
_R

EG

in
it

:

b

an
ks

el
 p

u
ls

eC
o

u
n

t

;C
le

ar
 p

u
ls

eC
o

u
n

t

cl
rf

p

u
ls

eC
o

u
n

t

b
an

ks
el

p

it
C

o
u

n
t

;C

le
ar

 p
it

C
o

u
n

t

cl
rf

p

it
C

o
u

n
t

m

o
vl

w

.1

;D

ef
in

e
p

it
ID

b
an

ks
el

p

it
ID

David Piggott - iBantumi

83

LED Register Code Development - 0.2

m
o

vw
f

p
it

ID

b

an
ks

el

A
N

SE
L

;I
n

it
ia

lis
e

d
ig

it
al

 o
u

tp
u

t

cl
rf

A

N
SE

L

b
an

ks
el

A

N
SE

LH

cl

rf

A
N

SE
LH

b
an

ks
el

P

O
R

TA

;C
le

ar
 o

u
tp

u
ts

cl
rf

P

O
R

TA

b

an
ks

el

P
O

R
TB

cl
rf

P

O
R

TB

b

an
ks

el

P
O

R
TC

cl
rf

P

O
R

TC

b

an
ks

el

TR
IS

A

;I

n
it

ia
lis

e
o

u
tp

u
ts

cl
rf

TR

IS
A

b
an

ks
el

TR

IS
B

cl
rf

TR

IS
B

b
an

ks
el

TR

IS
C

cl
rf

TR

IS
C

m
o

vl
w

B

'0
0

0
0

1
0

0
0

'
;I

n
it

ia
lis

e
E3

 a
s

d
at

a
in

p
u

t

b
an

ks
el

TR

IS
E

m

o
vw

f
TR

IS
E

 p
u

ls
eI

n
:

;L
is

te
n

 o
n

 E
3

 f
o

r
h

ig
h

 in
p

u
t

an
d

 m
ea

su
re

 le
n

gt
h

 in

m
ic

ro
se

co
n

d
s

b

an
ks

el

P
O

R
TE

b
tf

ss

P
O

R
TE

,3

;I
s

E3
 h

ig
h

 y
et

?

go
to

p

u
ls

eI
n

;N

o
, k

ee
p

 c
h

ec
ki

n
g

b

an
ks

el
 T

M
R

0

;Y

es
, s

ta
rt

 t
im

in
g

cl

rf

TM
R

0

b

an
ks

el

P
O

R
TE

 ti

m
er

Lo
o

p
:

b

tf
sc

P

O
R

TE
,3

;I

s
E3

 lo
w

 y
et

?

go
to

ti

m
er

Lo
o

p

;N

o
, k

ee
p

 t
im

in
g

b

an
ks

el

TM
R

0

;Y

es
, s

to
re

 p
u

ls
e

le
n

gt
h

 in
 p

u
ls

eL
en

gt
h

m
o

vf
w

TM

R
0

b
an

ks
el

p

u
ls

eL
en

gt
h

m
o

vw
f

p
u

ls
eL

en
gt

h

ch
ec

kS
ta

rt
B

it
:

;C

h
ec

k
if

 p
u

ls
e

w
as

 a
 s

ta
rt

 b
it

 (
88

u
s

o
r

h
ig

h
er

)
an

d

re
se

t
co

u
n

te
rs

 if
 s

o

su

b
lw

 .8
8

;S

u
b

tr
ac

t
8

8
 f

ro
m

 p
u

ls
e

le
n

gt
h

b
an

ks
el

ST

A
TU

S

b
tf

sc

ST
A

TU
S,

0

;I
f

an
sw

er
 is

 +
ve

/0
, p

u
ls

e
le

n
gt

h
 w

as
 g

re
at

er
 t

h
an

 8
8

go
to

ch

ec
kP

u
ls

eC
o

u
n

t
;A

n
sw

er
 n

o
t

+v
e/

0
, t

h
er

ef
o

re
 c

h
ec

kP
u

ls
eC

o
u

n
t

b

an
ks

el

p
it

C
o

u
n

t

;A
n

sw
er

 +
ve

/0
, t

h
er

ef
o

re
 p

u
ls

e
w

as
 a

 s
ta

rt
 b

it
 -

 le
t

p
it

C
o

u
n

t
=

1

cl

rf

p
it

C
o

u
n

t

David Piggott - iBantumi

84

LED Register Code Development - 0.2

in
cf

p

it
C

o
u

n
t

b

an
ks

el

p
u

ls
eC

o
u

n
t

;R

es
et

 p
u

ls
eC

o
u

n
t

cl

rf

p
u

ls
eC

o
u

n
t

go

to

p
u

ls
eI

n

 ch
ec

kP
u

ls
eC

o
u

n
t:

b
an

ks
el

p

u
ls

eC
o

u
n

t

m
o

vf
w

p

u
ls

eC
o

u
n

t

;C
h

ec
k

if
 p

u
ls

eC
o

u
n

t
=

2
4

 a
n

d
 r

es
et

 if
 s

o

su

b
lw

 .2
4

b
an

ks
el

 S
TA

TU
S

b

tf
ss

ST

A
TU

S,
2

go
to

sw

it
ch

;p

u
ls

eC
o

u
n

t
!=

 2
4

, s
w

it
ch

b
an

ks
el

p

u
ls

eC
o

u
n

t

;p
u

ls
eC

o
u

n
t

=
2

4
, r

es
et

cl
rf

p

u
ls

eC
o

u
n

t

b
an

ks
el

p

it
C

o
u

n
t

in

cf

p
it

C
o

u
n

t
 sw

it
ch

:

cl
rw

;C

h
ec

k
p

it
C

o
u

n
t

n
o

t
ze

ro

b

an
ks

el

p
it

C
o

u
n

t

su
b

w
f p

it
C

o
u

n
t

b

an
ks

el

ST
A

TU
S

b

tf
sc

ST

A
TU

S,
2

go
to

p

u
ls

eI
n

;p

it
C

o
u

n
t

ze
ro

, g
o

to
 p

u
ls

eI
n

, e
ls

e.
..

b

an
ks

el
 p

it
ID

;C

h
ec

k
if

 p
it

ID
 =

 p
it

C
o

u
n

t

m
o

vf
w

p

it
ID

su
b

w
f p

it
C

o
u

n
t,

W

b

tf
ss

ST

A
TU

S,
2

go
to

in

cP
u

ls
eC

o
u

n
t

;p
it

ID
 !

=
p

it
C

o
u

n
t,

 t
h

er
ef

o
re

 in
cr

em
en

t
p

u
ls

eC
o

u
n

t
an

d

co
n

ti
n

u
e

lis
te

n
in

g

b
an

ks
el

p

u
ls

eL
en

gt
h

;p

it
ID

 =
 p

it
C

o
u

n
t,

 r
el

o
ad

 w
o

rk
in

g
re

gi
st

er
 w

it
h

p

u
ls

e
le

n
gt

h

m

o
vf

w

p
u

ls
eL

en
gt

h

su

b
lw

 .6
3

;S

u
b

tr
ac

t
6

3
 f

ro
m

 p
u

ls
e

le
n

gt
h

b
an

ks
el

ST

A
TU

S

b
tf

sc

ST
A

TU
S,

0

;I
f

an
sw

er
 is

 +
ve

/0
, p

u
ls

e
le

n
gt

h
 w

as
 le

ss
 t

h
an

/e
q

u
al

 t
o

6

3

go

to

sw
it

ch
O

n

;T

h
er

ef
o

re
 s

w
it

ch
 o

n

go

to

sw
it

ch
O

ff

;E

ls
e,

 s
w

it
ch

 o
ff

 sw

it
ch

O
n

:

ca
ll

se
tP

o
rt

b
an

ks
el

FS

R

m

o
vw

f
FS

R

ca

ll
se

tB
it

b
an

ks
el

IN

D
F

io

rw
f

IN
D

F,
1

b
an

ks
el

p

u
ls

eC
o

u
n

t

in
cf

p

u
ls

eC
o

u
n

t

go
to

p

u
ls

eI
n

David Piggott - iBantumi

85

LED Register Code Development - 0.2
sw

it
ch

O
ff

:

ca
ll

se
tP

o
rt

b
an

ks
el

FS

R

m

o
vw

f
FS

R

ca

ll
se

tB
it

m
o

vw
f

m
as

kC
o

m
p

co
m

f
m

as
kC

o
m

p

m

o
vf

w

m
as

kC
o

m
p

b
an

ks
el

IN

D
F

an

d
w

f I
N

D
F,

1

b

an
ks

el

p
u

ls
eC

o
u

n
t

in

cf

p
u

ls
eC

o
u

n
t

go

to

p
u

ls
eI

n

 in
cP

u
ls

eC
o

u
n

t:

;I
n

cr
em

en
ts

 p
u

ls
eC

o
u

n
t

b

an
ks

el

p
u

ls
eC

o
u

n
t

in

cf

p
u

ls
eC

o
u

n
t

go

to

p
u

ls
eI

n

se
tP

o
rt

:

;P
o

rt
 lo

o
ku

p
 t

ab
le

; r
et

u
rn

s
P

O
R

T
ad

d
re

ss
 f

o
r

u
se

 w
it

h
 f

ile

se
le

ct
 r

eg
is

te
r

b

an
ks

el

p
u

ls
eC

o
u

n
t

m

o
vf

w

p
u

ls
eC

o
u

n
t

ad

d
w

f
P

C
L

re

tl
w

 P
O

R
TC

;1

re

tl
w

 P
O

R
TC

;2

re

tl
w

 P
O

R
TC

;3

re

tl
w

 P
O

R
TC

;4

re

tl
w

 P
O

R
TC

;5

re

tl
w

 P
O

R
TC

;6

re

tl
w

 P
O

R
TC

;7

re

tl
w

 P
O

R
TC

;8

re

tl
w

 P
O

R
TB

;9

re

tl
w

 P
O

R
TB

;1
0

re

tl
w

 P
O

R
TA

;1
1

re

tl
w

 P
O

R
TA

;1
2

re

tl
w

 P
O

R
TB

;1
3

re

tl
w

 P
O

R
TB

;1
4

re

tl
w

 P
O

R
TA

;1
5

re

tl
w

 P
O

R
TA

;1
6

re

tl
w

 P
O

R
TB

;1
7

re

tl
w

 P
O

R
TB

;1
8

re

tl
w

 P
O

R
TA

;1
9

re

tl
w

 P
O

R
TA

;2
0

re

tl
w

 P
O

R
TB

;2
1

re

tl
w

 P
O

R
TB

;2
2

re

tl
w

 P
O

R
TA

;2
3

re

tl
w

 P
O

R
TA

;2
4

se
tB

it
:

;B
it

 lo
o

ku
p

 t
ab

le
; r

et
u

rn
s

b
it

m
as

k
co

n
ta

in
in

g
LE

D

lo
ca

ti
o

n

David Piggott - iBantumi

86

LED Register Code Development - 0.2

b
an

ks
el

p

u
ls

eC
o

u
n

t

m
o

vf
w

p

u
ls

eC
o

u
n

t

ad
d

w
f P

C
L

re

tl
w

 B
'0

0
0

1
0

0
0

0
' ;

1

re
tl

w
 B

'1
0

0
0

0
0

0
0

' ;
2

re

tl
w

 B
'0

0
0

0
1

0
0

0
' ;

3

re
tl

w
 B

'0
0

0
0

0
1

0
0

' ;
4

re

tl
w

 B
'0

1
0

0
0

0
0

0
' ;

5

re
tl

w
 B

'0
0

1
0

0
0

0
0

' ;
6

re

tl
w

 B
'0

0
0

0
0

0
1

0
' ;

7

re
tl

w
 B

'0
0

0
0

0
0

0
1

' ;
8

re

tl
w

 B
'0

0
0

0
0

0
1

0
' ;

9

re
tl

w
 B

'0
0

0
0

0
0

0
1

' ;
10

re
tl

w
 B

'0
1

0
0

0
0

0
0

' ;
11

re
tl

w
 B

'1
0

0
0

0
0

0
0

' ;
12

re
tl

w
 B

'0
0

0
0

1
0

0
0

' ;
13

re
tl

w
 B

'0
0

0
0

0
1

0
0

' ;
14

re
tl

w
 B

'0
0

1
0

0
0

0
0

' ;
15

re
tl

w
 B

'0
0

0
1

0
0

0
0

' ;
16

re
tl

w
 B

'0
0

1
0

0
0

0
0

' ;
17

re
tl

w
 B

'0
0

0
1

0
0

0
0

' ;
18

re
tl

w
 B

'0
0

0
0

1
0

0
0

' ;
19

re
tl

w
 B

'0
0

0
0

0
1

0
0

' ;
20

re
tl

w
 B

'1
0

0
0

0
0

0
0

' ;
21

re
tl

w
 B

'0
1

0
0

0
0

0
0

' ;
22

re
tl

w
 B

'0
0

0
0

0
0

1
0

' ;
23

re
tl

w
 B

'0
0

0
0

0
0

0
1

' ;
24

 E
N

D

David Piggott - iBantumi

87

LED Register Code Development - 0.2

I used the same techniques as with register code 0.1 for testing during development (extensive use of MPLAB SIM’s Watch and Stimulus
panels)

Improvements
 Multiple register support (up to 255 registers on one line) (necessary addition)
 Processing speed improvements, to allow shorter delay between bits
 Refactored code to improve readability
 Added more commenting to improve readability

Register code 0.1 was very much a proof of concept for me, whereas 0.2 has everything nec-
essary for use in the pit boards and as such is the version I will be programming into the reg-
isters once I have produced the boards.

Speed Analysis
Out of curiosity, I did a series of tests to determine how long processing takes with this version. Using the Stopwatch panel (figure 34.1) of the
MPLAB SIM debugging tool, I measured the time taken between the point at which the input line goes low (end of a bit) and the point at
which the program returns to polling the input line, for a ‘start bit’, an ‘on bit’, and an ‘off bit’. I set breakpoints at each of these points (figure
34.2) to allow me to zero the stopwatch/read the time from it.

Test Results
Start bit - 18µs
On bit - 71µs
Off bit - 75µs

Figure 34.1 - Stopwatch

Figure 34.2 - Breakpoint on timerLoop

David Piggott - iBantumi

88

LED Register Code Development - 0.2

Evaluation
Without calculation it is clear that even with the processing improvements this version doesn’t actually meet my specification for the control
protocol, as it requires that the wait between bits is 25µs, while this code will require up to 75µs (and thus it would be a good idea to have the
LED driver function always do this to prevent errors). There are two ways I could improve this:
1. Attempt to further optimise the register code. However I believe it is near optimal already so it is very unlikely all processing times could

be reduced to 25µs.
2. Increase the clock speed of the PIC16F882s (and update the register code decision constants or prescaler) accordingly to 16MHz for ex-

ample (this would reduce the maximum delay to 18.75µs).

However, when some basic calculations are done to see what the implications of the current processing times are, it becomes clear that they
are actually of no consequence to the operation of the game.

To calculate the minimum update rate possible, divide one by the maximum packet length that can occur (which occurs when every LED is
off). The length of this is:
1 x (100 + 18) [start bit] + 336 x (75 + 75) [off bit] = 50518µs = 50.518 x 10-3s
Frequency then, equals 1/50.518 x 10-6s = 19.7949Hz

An update rate of 20Hz is more than adequate for game play, since sowing should be visible to the user, and just about good enough for visual
effects at the end of the game.

David Piggott - iBantumi

89

LED Register Code Development - 0.2

Start

init:

Set up I/O ports

and prescaler

pulseIn:

Is PORTE,3

high?

No

No

timerLoop:

Clear TMR0

timerLoop:

Is PORTE,3 low?

Yes

No

checkStartBit:

Was pulseLength > 88?

Yes

checkStartBit:

Clear pulseCount

Let pitCount = 1

Yes

checkPulseCount:

Is pulseCount = 24?

checkPulseCount:

Let pitCount = 1
Yes

switch:

Is pitCount = 0?

Yes

switch:

Is pitCount = pitID?

No

incPulseCount:

Increment

pulseCount

No

Yes

switch:

Was pulseLength > 63?

No

Yes

timerLoop:

Let pulseLength =

TMR0

No

Yes

switchOn:

call setPort and

set FSR to

returned value

switchOn:

call setBit and OR

returned value

with INDF

switchOn:

Inc pulseCount

switchOff:

call setPort and

set FSR to

returned value

switchOff:

call setBit and

complement

returned value

switchOff:

AND complement

of returned value

with INDF

switchOff:

Inc pulseCount

Figure 34.3 - Summary flowchart of register code 0.2

David Piggott - iBantumi

90

Mistakes in Artwork Set 0.2 - Player Two Upper

Figure 35.0 - Mistakes in Artwork Set 0.2 - Player Two Upper

I discovered these mistakes while drilling the component holes. The problem is missing tracks between the pads circled in red in figure 35.0,
which I must have deleted in my haste to fix the pad size mistake and make up for the lost time. However, I decided it would not be worth the
extra time to start the board again, so have worked around the problem by soldering wire links on the copper side.

David Piggott - iBantumi

91

PCB Pictures

Figure 36.0 - PICKit 2 Demo Board and LED
Register Prototype with Red, White and Blue
LEDs for testing

Figure 36.1 - Lower Pit Board (sans intercon-
nects)

Figure 36.2 - Game Logic Board (sans intercon-
nects) (artwork 0.2, PCB 0.1)

David Piggott - iBantumi

92

PCB Pictures

Figure 36.4 - Upper Pit Board, post population

Figure 36.6 - Tessellated Upper Pit Boards (LED side)
Figure 36.5 - Tessellated Upper Pit Boards (solder side,
trimmed)

Figure 36.3 - Upper Pit Board prior to population

David Piggott - iBantumi

93

PCB Pictures

Figure 36.10 - Menu switches, LCD, ICSP socket and on/off button
Figure 36.9 - Assembled and tessellated pit boards, with
switches

Figure 36.7 - One of 63 lengths
of ribbon cable being prepared

Figure 36.8 - Assembled pit boards with all interconnects

David Piggott - iBantumi

94

Pit Boards Smoke Test

Having completed production of the pit boards, peripherals, and mainboard PCB 0.1 from artwork version 0.2, I was ready to test them. Al-
though I would be learning C and using it for the actual game code, for the purposes of this smoke test, I chose to use assembly code because
(a) I was already familiar with it, so was able to quickly write some test code and (b) The test code was relatively simple, so using such a low
level language didn’t slow me down.

I wrote the test code so that it would:
1) Switch on the LCD power
2) Switch on the power to the pit boards via the relay
3) Send a frame of data with the first and third column of each register on
4) Delay for approximately half a second
5) Send a frame of data with the second and fourth column of each register on
6) Delay for approximately half a second and then goto 3)

Because it was only test code I didn’t spent any time on optimising memory usage, readability, or commenting it. For the sake of documenta-
tion completeness however, it is included in the pages that follow.

David Piggott - iBantumi

95

Pit Boards Smoke Test
;*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
;

*
;

 F
ile

n
am

e:

1

8
F2

52
 H

ar
d

w
ar

e
Te

st

*

;
 F

ile
 V

er
si

o
n

:

0
.1

*

;

*

;
 A

u
th

o
r:

D

av
id

 P
ig

go
tt

*

;
 C

o
m

p
an

y:

p

ig
go

tt
.m

e.
u

k

*

;

*

;*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

LI

ST
 P

=1
8

F2
5

2
, F

=I
N

H
X

3
2

;d

ir
ec

ti
ve

 t
o

 d
ef

in
e

p
ro

ce
ss

o
r

an
d

 f
ile

 f
o

rm
at

#i
n

cl
u

d
e

<P
18

F2
5

2
.IN

C
>

;p
ro

ce
ss

o
r

sp
ec

if
ic

 v
ar

ia
b

le
 d

ef
in

it
io

n
s

 ;*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
**

**
**

;C

o
n

fi
gu

ra
ti

o
n

 b
it

s
;M

ic
ro

ch
ip

 h
as

 c
h

an
ge

d
 t

h
e

fo
rm

at
 f

o
r

d
ef

in
in

g
th

e
co

n
fi

gu
ra

ti
o

n
 b

it
s,

 p
le

as
e

;s

ee
 t

h
e

.in
c

fi
le

 f
o

r
fu

th
er

 d
et

ai
ls

 o
n

 n
o

ta
ti

o
n

.
B

el
o

w
 a

re
 a

 f
ew

 e
xa

m
p

le
s.

 ;

 O
sc

ill
at

o
r

Se
le

ct
io

n
:

 C

O
N

FI
G

O

SC
 =

 X
T

;X
T

 ;*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
**

**
**

;V

ar
ia

b
le

 d
ef

in
it

io
n

s
; T

h
es

e
va

ri
ab

le
s

ar
e

o
n

ly
 n

ee
d

ed
 if

 lo
w

 p
ri

o
ri

ty
 in

te
rr

u
p

ts
 a

re
 u

se
d

.
; M

o
re

 v
ar

ia
b

le
s

m
ay

 b
e

n
ee

d
ed

 t
o

 s
to

re
 o

th
er

 s
p

ec
ia

l f
u

n
ct

io
n

 r
eg

is
te

rs
 u

se
d

; i

n
 t

h
e

in
te

rr
u

p
t

ro
u

ti
n

es
.

U
D

A
TA

 W

R
EG

_T
EM

P

R
ES

1

;v
ar

ia
b

le
 in

 R
A

M
 f

o
r

co
n

te
xt

 s
av

in
g

ST

A
TU

S_
TE

M
P

R

ES

1
;v

ar
ia

b
le

 in
 R

A
M

 f
o

r
co

n
te

xt
 s

av
in

g
B

SR
_T

EM
P

R

ES

1
;v

ar
ia

b
le

 in
 R

A
M

 f
o

r
co

n
te

xt
 s

av
in

g

U

D
A

TA
_A

C
S

 EX
A

M
P

LE

R

ES

1
;e

xa
m

p
le

 o
f

a
va

ri
ab

le
 in

 a
cc

es
s

R
A

M

m
yv

ar
1

R

ES

1
m

yv
ar

2

R
ES

 1

 ;*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
**

**
**

;E

EP
R

O
M

 d
at

a
; D

at
a

to
 b

e
p

ro
gr

am
m

ed
 in

to
 t

h
e

D
at

a
EE

P
R

O
M

 is
 d

ef
in

ed
 h

er
e

 D
A

TA
_E

EP
R

O
M

C

O
D

E
0

xf
00

0
00

Fi
gu

re
 3

7
.0

 -
 P

it
 b

o
ar

d
s

sm
o

ke
 t

es
t

co
d

e

David Piggott - iBantumi

96

Pit Boards Smoke Test

D

E
"T

es
t

D
at

a"
,0

,1
,2

,3
,4

,5

 ;*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
**

**
**

;R

es
et

 v
ec

to
r

; T
h

is
 c

o
d

e
w

ill
 s

ta
rt

 e
xe

cu
ti

n
g

w
h

en
 a

 r
es

et
 o

cc
u

rs
.

 R
ES

ET
_V

EC
TO

R

C
O

D
E

0
x0

0
0

0

go

to

in
it

;g
o

 t
o

 s
ta

rt
 o

f
m

ai
n

 c
o

d
e

 ;*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
**

**
**

;H

ig
h

 p
ri

o
ri

ty
 in

te
rr

u
p

t
ve

ct
o

r
; T

h
is

 c
o

d
e

w
ill

 s
ta

rt
 e

xe
cu

ti
n

g
w

h
en

 a
 h

ig
h

 p
ri

o
ri

ty
 in

te
rr

u
p

t
o

cc
u

rs
 o

r
; w

h
en

 a
n

y
in

te
rr

u
p

t
o

cc
u

rs
 if

 in
te

rr
u

p
t

p
ri

o
ri

ti
es

 a
re

 n
o

t
e

n
ab

le
d

.
 H

I_
IN

T_
V

EC
TO

R

C
O

D
E

0
x0

0
0

8

b

ra

H
ig

h
In

t

;g
o

 t
o

 h
ig

h
 p

ri
o

ri
ty

 in
te

rr
u

p
t

ro
u

ti
n

e
 ;*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

**
**

**

;L
o

w
 p

ri
o

ri
ty

 in
te

rr
u

p
t

ve
ct

o
r

; T
h

is
 c

o
d

e
w

ill
 s

ta
rt

 e
xe

cu
ti

n
g

w
h

en
 a

 lo
w

 p
ri

o
ri

ty
 in

te
rr

u
p

t
o

cc
u

rs
.

; T
h

is
 c

o
d

e
ca

n
 b

e
re

m
o

ve
d

 if
 lo

w
 p

ri
o

ri
ty

 in
te

rr
u

p
ts

 a
re

 n
o

t
u

se
d

.
 LO

W
_I

N
T_

V
EC

TO
R

 C
O

D
E

0
x0

0
1

8

b

ra

Lo
w

In
t

;g

o
 t

o
 lo

w
 p

ri
o

ri
ty

 in
te

rr
u

p
t

ro
u

ti
n

e
 ;*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

**
**

**

;H
ig

h
 p

ri
o

ri
ty

 in
te

rr
u

p
t

ro
u

ti
n

e

; T
h

e
h

ig
h

 p
ri

o
ri

ty
 in

te
rr

u
p

t
co

d
e

is
 p

la
ce

d
 h

er
e.

C

O
D

E
 H

ig
h

In
t:

 ;

**
*

h
ig

h
 p

ri
o

ri
ty

 in
te

rr
u

p
t

co
d

e
go

es
 h

er
e

**
*

re
tf

ie
 F

A
ST

 ;*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

**
**

**

;L
o

w
 p

ri
o

ri
ty

 in
te

rr
u

p
t

ro
u

ti
n

e

; T
h

e
lo

w
 p

ri
o

ri
ty

 in
te

rr
u

p
t

co
d

e
is

 p
la

ce
d

 h
er

e.

; T
h

is
 c

o
d

e
ca

n
 b

e
re

m
o

ve
d

 if
 lo

w
 p

ri
o

ri
ty

 in
te

rr
u

p
ts

 a
re

 n
o

t
u

se
d

.

David Piggott - iBantumi

97

Pit Boards Smoke Test
 Lo

w
In

t:

m
o

vf
f S

TA
TU

S,
ST

A
TU

S_
TE

M
P

;s

av
e

ST
A

TU
S

re
gi

st
er

m

o
vf

f W
R

EG
,W

R
EG

_T
EM

P

;s

av
e

w
o

rk
in

g
re

gi
st

er

m
o

vf
f B

SR
,B

SR
_T

EM
P

;s
av

e
B

SR
 r

eg
is

te
r

 ;
**

*
lo

w
 p

ri
o

ri
ty

 in
te

rr
u

p
t

co
d

e
go

es
 h

er
e

**
*

m

o
vf

f B
SR

_T
EM

P
,B

SR

;r

es
to

re
 B

SR
 r

eg
is

te
r

m
o

vf
f W

R
EG

_T
EM

P
,W

R
EG

;r
es

to
re

 w
o

rk
in

g
re

gi
st

er

m
o

vf
f S

TA
TU

S_
TE

M
P

,S
TA

TU
S

;r
es

to
re

 S
TA

TU
S

re
gi

st
er

re

tf
ie

 ;*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

**
**

**

;S
ta

rt
 o

f
m

ai
n

 p
ro

gr
am

; T

h
e

m
ai

n
 p

ro
gr

am
 c

o
d

e
is

 p
la

ce
d

 h
er

e.

David Piggott - iBantumi

98

Pit Boards Smoke Test
 in

it
:

cl

rf

LA
TA

cl
rf

LA

TB

cl

rf

LA
TC

m
o

vl
w

B

'0
0

0
0

0
1

1
0

'

m
o

vw
f

A
D

C
O

N
1

cl

rf

TR
IS

A

cl

rf

TR
IS

B

cl

rf

TR
IS

C

m

o
vl

w

B
'0

0
0

0
1

1
1

1
'

m

o
vw

f
TR

IS
C

m
o

vl
w

B

'0
0

0
0

0
0

1
0

'

m
o

vw
f

TR
IS

B

b

sf

LA

TB
,5

b
sf

LA
TB

,2

 m
ai

n
:

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

st
ar

tP
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
re

gi
st

er
1

b
an

ks
el

m
yv

ar
1

cl

rf

m

yv
ar

1

David Piggott - iBantumi

99

Pit Boards Smoke Test

d
el

ay
1

:

b
an

ks
el

m
yv

ar
2

cl

rf

m

yv
ar

2

d
el

ay
2

:

b
an

ks
el

m
yv

ar
2

in

cf

m

yv
ar

2

m
o

vl
w

.2
5

5

su

b
w

f
m

yv
ar

2

b
an

ks
el

ST
A

TU
S

b

tf
ss

ST
A

TU
S,

2

go
to

d
el

ay
2

b
an

ks
el

m
yv

ar
1

in

cf

m

yv
ar

1

m
o

vl
w

.2
5

5

su

b
w

f
m

yv
ar

1

b
an

ks
el

ST
A

TU
S

b

tf
ss

ST
A

TU
S,

2

go
to

d
el

ay
1

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
st

ar
tP

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

re
gi

st
er

2

b

an
ks

el

m

yv
ar

1

David Piggott - iBantumi

100

Pit Boards Smoke Test

cl
rf

m
yv

ar
1

d

el
ay

3
:

b

an
ks

el

m

yv
ar

2

cl
rf

m
yv

ar
2

d

el
ay

4
:

b

an
ks

el

m

yv
ar

2

in
cf

m
yv

ar
2

m

o
vl

w

.2

5
5

su
b

w
f

m
yv

ar
2

b

an
ks

el

ST

A
TU

S

b
tf

ss

ST

A
TU

S,
2

go

to

d

el
ay

4

b

an
ks

el

m

yv
ar

1

in
cf

m
yv

ar
1

m

o
vl

w

.2

5
5

su
b

w
f

m
yv

ar
1

b

an
ks

el

ST

A
TU

S

b
tf

ss

ST

A
TU

S,
2

go

to

d

el
ay

3

go

to

m
ai

n

 re
gi

st
er

1
:

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

David Piggott - iBantumi

101

Pit Boards Smoke Test

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

re

tu
rn

 re

gi
st

er
2

:

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

David Piggott - iBantumi

102

Pit Boards Smoke Test

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

n
P

u
ls

e

ca
ll

p
ro

ce
ss

D
el

ay

ca

ll
o

ff
P

u
ls

e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
n

P
u

ls
e

ca

ll
p

ro
ce

ss
D

el
ay

ca
ll

o
ff

P
u

ls
e

ca
ll

p
ro

ce
ss

D
el

ay

re

tu
rn

 p

ro
ce

ss
D

el
ay

:

ca
ll

p

au
se

2
5

u
s

ca

ll
p

au
se

2
5

u
s

ca

ll
p

au
se

2
5

u
s

re

tu
rn

 o

ff
P

u
ls

e:

b

an
ks

el

P
O

R
TA

b
sf

P
O

R
TA

,0

ca

ll

p
au

se
2

5
u

s

ca
ll

p
au

se
2

5
u

s

ca
ll

p
au

se
2

5
u

s

b
cf

P
O

R
TA

,0

re

tu
rn

 o

n
P

u
ls

e:

b

an
ks

el

P
O

R
TA

b
sf

P
O

R
TA

,0

ca

ll

p
au

se
2

5
u

s

ca
ll

p
au

se
2

5
u

s

b
cf

P
O

R
TA

,0

re

tu
rn

 st

ar
tP

u
ls

e:

b

an
ks

el

P
O

R
TA

b
sf

P
O

R
TA

,0

ca

ll

p
au

se
2

5
u

s

ca
ll

p
au

se
2

5
u

s

ca
ll

p
au

se
2

5
u

s

David Piggott - iBantumi

103

Pit Boards Smoke Test

ca
ll

p
au

se
2

5
u

s

b
cf

P
O

R
TA

,0

re

tu
rn

 p

au
se

2
5

u
s:

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

n

o
p

n
o

p

re

tu
rn

 ;*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

**
**

**

;E
n

d
 o

f
p

ro
gr

am

EN
D

David Piggott - iBantumi

104

Pit Boards Smoke Test

This was the final version of the test code; I did have interim versions that progressed towards this (started with only one register, all LEDs
on), but I think it better not to document all of these in my effort to keep the page count sensible.

I was able to download all of these test sequences successfully into the PIC18F252, but none of them would appear to run; that is , there was
no click from the relay to even indicate power was getting to the pit boards. I tested the output of the pin controlling the relay and found it to
be low. Knowing that it would probably be something really simple I was reluctant to open another support case with Microchip, but with no-
where else to turn, did so anyway. However, while waiting for a reply, I had another very close look at the datasheet for the PIC18F252 and
realised my mistake independently; I had foolishly assumed that because the PIC16F882s have built in 4MHz resonators that the same would
be true for the PIC18F252. Not so. I would need to make another artwork and PCB with a resonator on.

However, still keen to know whether the pit boards themselves were functional, I checked the pin diagrams for the 18F252 and 16F882 and
found that, for my circuit, they were pin compatible. I then ported the test sequence that I had written for the 18F252 so that it would run on
the 16F882, swapped the PICs around, programmed the code to it, and was shortly pleased to hear the click of the relay. However, the LEDs
on the pitboards remained decidedly unlit. I checked all the obvious things, that the register PICs had +5v across them, that the output of the
driving PIC was pulsing, and that these pulses were also present on the input pins to the register PICs. All were as they should be. With no
other leads to follow, I began to suspect corruption of the data frames, perhaps due to excessive capacitance (which I thought unlikely, given
the low data rate). I hooked up a CRO to the input of one of the register PICs to check that the edges of the pulses were sharp. They were.

In the end this problem too was solved by re-examining the datasheet for the PIC (16F882 this time) very closely. On reaching the page about
PORTE (that which the data input pin is on, on the register PICs), I noticed that the pin also doubles up as MCLR (master clear). I now realised
that you must specify in the device configuration bits whether this should be used as reset or an input. On checking the device configuration
bits in MPLAB IDE, I found that PORTE,3 was indeed configured as reset. If, as I suspected it to be, this was the cause of all pit boards not re-
sponding, I would need to remove and reprogram each of the 14 register PICs. I first of all reprogrammed only the register PIC for pit one,
and, pleased that this had solved the problem, continued to reprogram all the register PICs. Now all that remained to be done was make a
new mainboard. Figure 37.1 overleaf shows this test sequence running.

David Piggott - iBantumi

105

Pit Boards Smoke Test

Figure 37.1 - Smoke test running on pit boards and main board 0.1 from artwork 0.2

David Piggott - iBantumi

106

Pit Boards Smoke Test

Power Issues
It should be noted that the boards would not power up until I raised the voltage of the power supply to 7.5V. Once they had powered up at
this however I was able to reduce the power supply voltage down to 6V with everything still working fine. This is no doubt due to the voltage
drop across the bridge rectifiers, and I do not consider this an issue in itself as I had planned to the run the boards from 12V input (9V up-
wards would be fine too but for high current applications, 12V supplies seem to be the standard).

Not visible in figure 37.1 is an issue with some of the red LEDs. This can be seen better in figure 37.2. I loaded a test program onto the board
that switches on the first eight LEDs of the main pits. There are no problems with the blue LEDs at all. However, the characteristics of the
problems with red are described below:

 The first seven red LEDs do not switch on at high board input voltages (despite

the 5V regulators between power supply and PICs).
 The remaining seventeen LEDs operate with as much flexibility as the blue

LEDs; i.e. given any board input voltage between 6V and 12V.
 The first seven can only be made to switch on by lowering the board input volt-

age to 6V at the supply. Once they have switch on they operate with board in-
put voltages of 6V or 7.5V.

 Note however that, as described above, for the boards to power up, the board
input voltage must be at least 7.5V, but for the red LEDs to subsequently light it
must be lowered to 6V. It is acceptable to be having to do this while the game
is still in development, but by the time it is finished, it should “just work”.

Figure 37.2 - Problem powering red LEDs

David Piggott - iBantumi

107

Pit Boards Smoke Test

In order to determine the cause of the problem, I took voltage measurements at various points on the (player one, red) board, with two dif-
ferent board input voltages:

Board input voltage; 6V
Pit board ground rail: 0.78V
Pit board +5V rail: 3.48
Output from PIC to a red LED: 2.61V
P.D. between pit board “ground” and “+5V” (i.e. powering the PIC16F882s): 2.7V
P.D. between PIC output and ground (i.e. powering the red LEDs): 1.83V

Board input voltage; 7.5V
Pit board ground rail: 0.94V
Pit board +5V rail: 4.89V
Output from PIC to a red LED: 2.65V
P.D. between pit board “ground” and “+5V” (i.e. powering the PIC16F882s): 3.95V
P.D. between PIC output and ground (i.e. powering the red LEDs): 1.71V

From figure 33.1 is can be seen that the problematic LEDs (the first seven) are all connected to PORTC of the register PICs. This has to be of
some significance.

However, in the constant feud with time I delayed investigation of this problem in favour of completing the development and production of a
final mainboard, which still had problems.

David Piggott - iBantumi

108

Oscillator Selection & Mainboard Artwork 0.3

Figure 38.0 shows the new artwork, 0.3, that includes connections for a 3 pin ceramic
resonator (X1). This is the only change between 0.2 and 0.3, however, inputs and out-
puts may also be tracked to different pins (these changes are detailed later on, with re-
vised keyboard array addresses). Figure 40.1 shows the colour coding.

Another problem I had noticed was that I had incorrectly tracked the power button and
its pull down resistor in artwork 0.2. This is fixed in artwork 0.3.

Figure 38.1 shows the oscillator modes available on the PIC18F252 (taken from page 19
of the PIC18F252 datasheet). In choosing what option to go for, I was able to eliminate
the last four immediately, and so had to choose from the first four. The low power crys-
tal runs too slowly, in the KHz range, so the choice was between a crystal or ceramic
resonator, and whether to use PLL.

I decided to use a ceramic resonator because these are available from Rapid electronics
in packages with the necessary capacitors built in, and this would simplify the artwork.

 In preparation for the event that I finish all
other tasks ahead of time and attempt to de-
velop an AI player, I decided to run the 18F252
at the highest speed possible; 40Mhz. However
the faster resonator available from Rapid was
32Mhz, so instead I chose to order a 10MHz
resonator and use the device in PLL mode
(multiplies resonator speed by four).

Figure 38.0 - Mainboard artwork 0.3 Figure 38.1 - 18F252 Oscillator modes

David Piggott - iBantumi

109

Mainboard PCB 0.2 from artwork 0.3

Figure 39.1 shows the newly created mainboard 0.2. Having finished production of this
board, I then set about updating the switch array addresses. Figure 39.0 shows the revised
mappings.

On doing so, I recognised a fault common to both this artwork and the previous; I had for-
gotten to include any pull up/down resistors for the switch array inputs. I would need to
make yet another artwork and PCB from this.

Prior to doing this however, I put a PIC18F252 in the and programmed the test sequence I
had written in assembly code onto it, so that I would at least know that the resonator was now working correctly. However when I populated

the board, the 10MHz resonator I had ordered had not arrived (and still hasn’t, as I write
this documentation), so instead I had substituted it with a 4MHz resonator (which the
department has a good supply of for use with PICAXEs). Accordingly, I set the oscillator
configuration bit to XT (rather than HS + PLL which I will use with the 10MHz resonator).

I was relieved to find that the PIC18F252 was fully functional in this new board, and that
my test sequence was correctly alternating the columns of LEDs on the pit boards.

Figure 39.1 - Mainboard PCB 0.2 from artwork 0.3

 RC0 RC1 RC2 RC3

RC4 Pit 6 Pit 3 Pit 10 Pit 13

RC5 Pit 4 Pit 1 Pit 8 Pit 11

RC6 Pit 5 Pit 2 Pit 9 Pit 12

RB7 Menu 1 Menu 2 Menu 3 Menu 4

Figure 39.0 - Switch array addresses table

David Piggott - iBantumi

110

Mainboard Artwork 0.4

Figure 40.0 shows mainboard artwork 0.4. As mentioned, the only change of signifi-
cance is that I have added four pull down resistors to ground, one for each of the inputs
of the switch array.

Minor changes are that I have added weaving holes for the ICSP as I changed my mind
again and decided to connect the header on the mainboard to the separate ICSP socket
board I had made, for easy programming without opening the case. I had omitted these
from artwork 0.3 as I had intended to position
the PCB to one end of the pit boards, so the
header would be adjacent to one edge of the
case (and thus with a right angled header, it
would be reachable via a hole in the side of the
case). I repositioned a few pads to reduce/
increase the length of a few zero Ohm resistors,
and generally tidied up the ICSP/resonator re-
gions.

Figure 40.0 - Mainboard artwork 0.4

 Power Supply

 Relay Controlled Register
Power Supply

 0v

 Unregulated +V

 +5v

 Input

 Output

 Programming clock and data
lines

 Vpp Programming enable volt-
age

 Resonator

Figure 40.1 - Coding key

David Piggott - iBantumi

111

Mainboard PCB 0.3 from artwork 0.4

Figure 41.0 shows mainboard 0.3, completed with the exception of the piezo sounder. The ‘smoke test’ code ran successfully on this too as
expected. The switch array addresses are identical to those of mainboard 0.2 from artwork 0.3 (figure 39.0).

This concludes all hardware development. The significant remaining tasks are:
1) Game code development
2) Case design
3) LCD & menu code development
4) Case construction
5) AI player development (time and PIC18F252 capabilities permitting)

Figure 41.0 - Mainboard PCB 0.3 from artwork 0.4

David Piggott - iBantumi

112

Production Time Plan

ID Task Name Start Finish Duration

Nov 2007 Dec 2007 Jan 2008 Feb 2008

4/11 11/11 18/11 25/11 2/12 9/12 16/12 23/12 30/12 6/1 13/1 20/1 27/1

5d14/03/200810/03/2008Upper and lower panel production

11d07/03/200826/02/2008Case dimensioning & model creation

Mar 2008

3/2 10/2 17/2 24/2 2/3 9/3 16/3

Apr 2008

23/3 30/3 6/4

1

2

3

23d06/01/200815/12/2007Christmas Holidays

9d17/02/200809/02/2008Spring Half Term

18d06/04/200820/03/2008Easter Holidays

6

8

7

3d19/03/200817/03/2008Side panel production

18d06/04/200820/03/2008LCD menus & AI code development

11

10

4d10/04/200807/04/2008Completion of documentation

9 3d19/03/200817/03/2008
Completion of case (spirowrap, rubber

feet, battery boxes etc.)

4

5

9d09/11/200701/11/2007Project initialisation

107d25/02/200811/11/2007Development

Figure 42.0 - Time management review

David Piggott - iBantumi

113

Time Management Review

Figure 42.0 shows my actual time use of time to the present day. As can be seen from the tasks shown in it, I have infact at this stage already
introduced myself to the C programming language and written a proof of concept program; that is, a basic, but playable game of iBantumi!

Also worth noting at this time is that the deadline for A2 coursework has been altered, from 19/03/08 to 10/04/08, for both practical and
documentation.

This is brilliant news for the project because I will no longer have to create the case and code all the peripheral features (LCD menus and AI
player) in the limited time before the Easter holidays. Realistically I would probably have just had to drop plans for the AI player. I will now be
able to use the time before the Easter holidays to complete the case, and then spend the Easter holidays finalising the main game logic pro-
gram and the documentation.

David Piggott - iBantumi

114

Proof of Concept Program

Included here for the sake of completeness is the first program I wrote in C, that is a proof of concept for the iBantumi game. The following
points should be noted:
 It is not fully commented, as I will be refactoring it when I start work on the final program.
 It is probably not the most efficient means to an end, but as stated is just a proof of concept so I did not spend a great deal of time on it.
 I will not explain at this point in documentation how it works; this will come when I have completed case development and construction

and start work on the final program.
 It is not complete; there is no evaluation of the game state to determine if a player has won, so the game doesn’t terminate as might be

expected.
 Though I did extensive play testing, and there was no shortage of volunteers for this (it has already proved to be a highly enjoyable

game!), there are still one or two “bugs”. I say that in quotation marks because they do not cause the program to crash, merely misapply
one or two rules of the game.

 At this stage the resonator in the mainboard is still a 4MHz device, so delays are coded accordingly.
Features of this program:
 Player one (red) always starts the game.
 There is a brief delay between each seed that is sown to allow players to watch moves take place.
 As I have not yet worked out how to control the LCD, there are no menus and instead the four menu buttons are used to restart the

game; one button starts the game with one seed per pit, the next button with two per pit, the next with three and the last with four.

David Piggott - iBantumi

115

#i
n

cl
u

d
e

<
p

18
cx

xx
.h

>

#p
ra

gm
a

co
n

fi
g

W
D

T
=

O
FF

 //

Fu
n

ct
io

n
 p

ro
to

ty
p

es

in
t

sc

an
ke

ys
()

;
in

t

ke
yi

n
()

;
vo

id

w
ri

te
LE

D
s(

);

vo
id

d

el
ay

2
5

u
s(

);

vo
id

u

p
d

at
eD

el
ay

()
;

 //

V

ar
ia

b
le

 d
ec

la
ra

ti
o

n
s

in
t

ke

y;

in
t

p

it
D

at
a[

1
5

];

in
t

LE

D
D

ri
ve

rP
it

C
o

u
n

t;

in
t

ac

ti
ve

P
it

;
in

t

ac
ti

ve
P

la
ye

r;

lo
n

g

d
el

ay
C

o
u

n
t;

 //

Fu
n

ct
io

n
 d

ec
la

ra
ti

o
n

s
in

t

sc
an

ke
ys

()
{

LA

TC
 =

 0
b

0
0

0
1

0
0

0
0

;

sw
it

ch
(0

b
00

0
0

1
1

1
1

 &
 P

O
R

TC
){

ca
se

 0
b

00
0

0
0

0
0

1
:

ke
y

=
6

;

b
re

ak
;

ca

se
 0

b
00

0
0

0
0

1
0

:

ke

y
=

3
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

1
0

0
:

ke
y

=
1

0
;

b

re
ak

;

ca
se

 0
b

00
0

0
1

0
0

0
:

ke
y

=
1

3
;

b

re
ak

;

d
ef

au
lt

:

ke

y
=

0
;

b

re
ak

;

}

if
(k

ey
 >

 0
){

re

tu
rn

ke

y;

}

LA

TC
 =

 0
b

0
0

1
0

0
0

0
0

;

sw
it

ch
(0

b
00

0
0

1
1

1
1

 &
 P

O
R

TC
){

ca
se

 0
b

00
0

0
0

0
0

1
:

ke
y

=
4

;

b
re

ak
;

Fi
gu

re
 4

3
.0

 -
 P

ro
o

f
o

f
co

n
ce

p
t

p
ro

gr
am

Proof of Concept Program

David Piggott - iBantumi

116

ca

se
 0

b
00

0
0

0
0

1
0

:

ke

y
=

1
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

1
0

0
:

ke
y

=
8

;

b
re

ak
;

ca

se
 0

b
00

0
0

1
0

0
0

:

ke

y
=

1
1

;

b
re

ak
;

d

ef
au

lt
:

ke
y

=
0

;

b
re

ak
;

}

if

(k
ey

 >
 0

){

re
tu

rn

ke
y;

}

LA
TC

 =
 0

b
0

1
0

0
0

0
0

0
;

sw

it
ch

(0
b

00
0

0
1

1
1

1
 &

 P
O

R
TC

){

ca

se
 0

b
00

0
0

0
0

0
1

:

ke

y
=

5
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

0
1

0
:

ke
y

=
2

;

b
re

ak
;

ca

se
 0

b
00

0
0

0
1

0
0

:

ke

y
=

9
;

b

re
ak

;

ca
se

 0
b

00
0

0
1

0
0

0
:

ke
y

=
1

2
;

b

re
ak

;

d
ef

au
lt

:

ke

y
=

0
;

b

re
ak

;

}

if
(k

ey
 >

 0
){

re

tu
rn

ke

y;

}

LA

TC
 =

 0
b

1
0

0
0

0
0

0
0

;

sw
it

ch
(0

b
00

0
0

1
1

1
1

 &
 P

O
R

TC
){

ca
se

 0
b

00
0

0
0

0
0

1
:

ke
y

=
1

5
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

0
1

0
:

ke
y

=
1

6
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

1
0

0
:

ke
y

=
1

7
;

Proof of Concept Program

David Piggott - iBantumi

117

b

re
ak

;

ca
se

 0
b

00
0

0
1

0
0

0
:

ke
y

=
1

8
;

b

re
ak

;

d
ef

au
lt

:

ke

y
=

0
;

b

re
ak

;

}

if
(k

ey
 >

 0
){

re

tu
rn

ke

y;

}e

ls
e{

re

tu
rn

 0
;

}

} in
t

ke

yi
n

()
{

ke

y
=

0
;

w

h
ile

(k
ey

 =
=

0
){

ke

y
=

sc
an

ke
ys

()
;

if
(k

ey
 !

=
0

){

re

tu
rn

 k
ey

;

}

}

} vo
id

w

ri
te

LE
D

s(
){

P
O

R
TA

b
it

s.
R

A
0

=
1

;

d
el

ay
2

5
u

s(
);

d
el

ay
2

5
u

s(
);

d
el

ay
2

5
u

s(
);

d
el

ay
2

5
u

s(
);

P
O

R
TA

b
it

s.
R

A
0

=
0

;

d
el

ay
2

5
u

s(
);

fo
r(

LE
D

D
ri

ve
rP

it
C

o
u

n
t

=
 1

; L
ED

D
ri

ve
rP

it
C

o
u

n
t

<=
 1

4
; L

ED
D

ri
ve

rP
it

C
o

u
n

t+
+)

{

in

t
LE

D
;

sw
it

ch
(L

ED
D

ri
ve

rP
it

C
o

u
n

t)
{

ca

se
 7

:

fo

r(
LE

D
 =

 0
; L

ED
 <

 (
2

4
 -

 p
it

D
at

a[
LE

D
D

ri
ve

rP
it

C
o

u
n

t]
);

 L
ED

++
){

P
O

R
TA

b
it

s.
A

N
0

 =
 1

;

d
el

ay
2

5
u

s(
);

d
el

ay
2

5
u

s(
);

d
el

ay
2

5
u

s(
);

P
O

R
TA

b
it

s.
R

A
0

=
0

;

d
el

ay
2

5
u

s(
);

}

fo
r(

LE
D

 =
 0

; L
ED

 <
 p

it
D

at
a[

LE
D

D
ri

ve
rP

it
C

o
u

n
t]

; L
ED

++
){

P
O

R
TA

b
it

s.
A

N
0

 =
 1

;

Proof of Concept Program

David Piggott - iBantumi

118

d

el
ay

2
5

u
s(

);

d

el
ay

2
5

u
s(

);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

d

el
ay

2
5

u
s(

);

}

b
re

ak
;

ca

se
 1

4
:

fo
r(

LE
D

 =
 0

; L
ED

 <
 (

2
4

 -
 p

it
D

at
a[

LE
D

D
ri

ve
rP

it
C

o
u

n
t]

);
 L

ED
++

){

P

O
R

TA
b

it
s.

A
N

0
 =

 1
;

d

el
ay

2
5

u
s(

);

d

el
ay

2
5

u
s(

);

d

el
ay

2
5

u
s(

);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

d

el
ay

2
5

u
s(

);

}

fo

r(
LE

D
 =

 0
; L

ED
 <

 p
it

D
at

a[
LE

D
D

ri
ve

rP
it

C
o

u
n

t]
; L

ED
++

){

P

O
R

TA
b

it
s.

A
N

0
 =

 1
;

d

el
ay

2
5

u
s(

);

d

el
ay

2
5

u
s(

);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

d

el
ay

2
5

u
s(

);

}

b
re

ak
;

d

ef
au

lt
:

fo
r(

LE
D

 =
 0

; L
ED

 <
 (

2
4

 -
 p

it
D

at
a[

LE
D

D
ri

ve
rP

it
C

o
u

n
t]

);
 L

ED
++

){

P

O
R

TA
b

it
s.

A
N

0
 =

 1
;

d

el
ay

2
5

u
s(

);

d

el
ay

2
5

u
s(

);

d

el
ay

2
5

u
s(

);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

d

el
ay

2
5

u
s(

);

}

fo

r(
LE

D
 =

 0
; L

ED
 <

 p
it

D
at

a[
LE

D
D

ri
ve

rP
it

C
o

u
n

t]
; L

ED
++

){

P

O
R

TA
b

it
s.

A
N

0
 =

 1
;

d

el
ay

2
5

u
s(

);

d

el
ay

2
5

u
s(

);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

d

el
ay

2
5

u
s(

);

}

b
re

ak
;

}

}
} vo

id

d
el

ay
2

5
u

s(
){

N
o

p
()

;

N
o

p
()

;

N
o

p
()

;

N
o

p
()

;

N
o

p
()

;

Proof of Concept Program

David Piggott - iBantumi

119

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

N

o
p

()
;

} vo
id

u

p
d

at
eD

el
ay

()
{

fo

r(
d

el
ay

C
o

u
n

t
=

0
; d

el
ay

C
o

u
n

t
<

1
0

0
0

0
; d

el
ay

C
o

u
n

t+
+)

{

}
} in

t

m
o

ve
()

{

if
(p

it
D

at
a[

0
]

!=
 0

){

ac
ti

ve
P

it
++

;

if

(a
ct

iv
eP

it
 =

=
1

5
){

ac
ti

ve
P

it
 =

 1
;

}e

ls
e

if
(a

ct
iv

eP
it

 =
=

7
 &

&
 a

ct
iv

eP
la

ye
r

==
 1

){

ac

ti
ve

P
it

++
;

}e
ls

e
if

(a
ct

iv
eP

it
 =

=
1

4
 &

&
 a

ct
iv

eP
la

ye
r

==
 0

){

ac

ti
ve

P
it

++
;

}

p

it
D

at
a[

ac
ti

ve
P

it
]+

+;

p
it

D
at

a[
0

]-
-;

re

tu
rn

 1
;

}e

ls
e{

re

tu
rn

 0
;

}

} vo
id

m

ai
n

(v
o

id
){

//

In

it
ia

lis
e

I/
O

LA
TA

 =
 0

;

Proof of Concept Program

David Piggott - iBantumi

120

LA

TB
 =

 0
;

LA

TB
 =

 0
;

A

D
C

O
N

1
=

0
b

00
0

0
0

1
1

0
;

TR

IS
A

 =
 0

b
00

0
0

0
0

0
0

;

TR
IS

B
 =

 0
b

00
0

0
0

0
1

0
;

TR

IS
C

 =
 0

b
00

0
0

1
1

1
1

;

//

En

ab
le

 p
it

B
o

ar
d

s
p

o
w

er
 c

o
n

tr
o

l r
el

ay
 a

n
d

 p
o

w
er

 t
o

 L
C

D

P

O
R

TB
b

it
s.

R
B

2
 =

 1
;

//

LC
D

P
O

R
TB

b
it

s.
R

B
5

 =
 1

;
//

R

el
ay

//

In

it
ia

lis
e

b
o

ar
d

 w
it

h
 t

w
o

 s
ee

d
s

p
er

 p
it

, e
xc

lu
d

in
g

m
an

ca
la

fo
r(

LE
D

D
ri

ve
rP

it
C

o
u

n
t

=
 1

; L
ED

D
ri

ve
rP

it
C

o
u

n
t

<
 1

5
; L

ED
D

ri
ve

rP
it

C
o

u
n

t+
+)

{

p

it
D

at
a[

LE
D

D
ri

ve
rP

it
C

o
u

n
t]

 =
 2

;

}

p
it

D
at

a[
7

]
=

0
;

p

it
D

at
a[

1
4

]
=

0
;

//

Se
n

d
 s

ta
rt

in
g

se
ed

s
to

 b
o

ar
d

fo
r(

d
el

ay
C

o
u

n
t

=
0

; d
el

ay
C

o
u

n
t

<
1

0
; d

el
ay

C
o

u
n

t+
+)

{

w

ri
te

LE
D

s(
);

}

ac
ti

ve
P

la
ye

r
=

0
;

w

h
ile

(1
){

ke

y
=

ke
yi

n
()

;

//

W

ai
t

fo
r

p
la

ye
r

to
 in

it
ia

lis
e

th
ei

r
m

o
ve

if

((
1

 <
=

ke
y

&
&

 k
ey

 <
=

6
 &

&
 a

ct
iv

eP
la

ye
r

==
 0

)
|

(8
 <

=
ke

y
&

&
 k

ey
 <

=
13

 &
&

ac

ti
ve

P
la

ye
r

==
 1

))
{

//

P
er

fo
rm

 o
n

e
m

o
ve

p

it
D

at
a[

0
]

=
p

it
D

at
a[

ke
y]

;

p

it
D

at
a[

ke
y]

 =
 0

;

ac

ti
ve

P
it

 =
 k

ey
;

w
h

ile
(m

o
ve

()
){

u
p

d
at

eD
el

ay
()

;

fo
r(

d
el

ay
C

o
u

n
t

=
0

; d
el

ay
C

o
u

n
t

<
1

0
; d

el
ay

C
o

u
n

t+
+)

{

w

ri
te

LE
D

s(
);

}

}

//

M
o

ve
 c

o
m

p
le

te
, e

va
lu

at
e

st
o

p
 c

o
n

d
it

io
n

s

if

((
p

it
D

at
a[

ac
ti

ve
P

it
]

==
 1

)
&

&
 (

ac
ti

ve
P

la
ye

r
==

 0
)

&
&

 (
1

 <
=

ac
-

ti
ve

P
it

 &
&

 a
ct

iv
eP

it
 <

=
6

)
&

&
 (

p
it

D
at

a[
1

4
 -

 a
ct

iv
eP

it
]

!=
 0

))
{

p

it
D

at
a[

7
]

+=
 p

it
D

at
a[

14
 -

 a
ct

iv
eP

it
];

p
it

D
at

a[
1

4
 -

 a
ct

iv
eP

it
]

=
0

;

u
p

d
at

eD
el

ay
()

;

fo
r(

d
el

ay
C

o
u

n
t

=
0

; d
el

ay
C

o
u

n
t

<
1

0
; d

el
ay

C
o

u
n

t+
+)

{

w

ri
te

LE
D

s(
);

}

p
it

D
at

a[
7

]
+=

 p
it

D
at

a[
ac

ti
ve

P
it

];

p

it
D

at
a[

ac
ti

ve
P

it
]

=
0

;

Proof of Concept Program

David Piggott - iBantumi

121

u

p
d

at
eD

el
ay

()
;

fo

r(
d

el
ay

C
o

u
n

t
=

0
; d

el
ay

C
o

u
n

t
<

1
0

; d
el

ay
C

o
u

n
t+

+)
{

w
ri

te
LE

D
s(

);

}

ac

ti
ve

P
la

ye
r

=
1

 -
 a

ct
iv

eP
la

ye
r;

}e

ls
e

if
((

p
it

D
at

a[
ac

ti
ve

P
it

]
==

 1
)

&
&

 (
ac

ti
ve

P
la

ye
r

==
 1

)
&

&
 (

8
 <

=
ac

ti
ve

P
it

 &
&

 a
ct

iv
eP

it
 <

=
1

3
)

&
&

 (
p

it
D

at
a[

14
 -

 a
ct

iv
eP

it
]

!=
 0

))
{

p

it
D

at
a[

1
4

]
+=

 p
it

D
at

a[
1

4
 -

 a
ct

iv
eP

it
];

p
it

D
at

a[
1

4
 -

 a
ct

iv
eP

it
]

=
0

;

u
p

d
at

eD
el

ay
()

;

fo
r(

d
el

ay
C

o
u

n
t

=
0

; d
el

ay
C

o
u

n
t

<
1

0
; d

el
ay

C
o

u
n

t+
+)

{

w

ri
te

LE
D

s(
);

}

p
it

D
at

a[
1

4
]

+=
 p

it
D

at
a[

ac
ti

ve
P

it
];

p
it

D
at

a[
ac

ti
ve

P
it

]
=

0
;

u

p
d

at
eD

el
ay

()
;

fo

r(
d

el
ay

C
o

u
n

t
=

0
; d

el
ay

C
o

u
n

t
<

1
0

; d
el

ay
C

o
u

n
t+

+)
{

w
ri

te
LE

D
s(

);

}

ac

ti
ve

P
la

ye
r

=
1

 -
 a

ct
iv

eP
la

ye
r;

}e

ls
e

if
((

ac
ti

ve
P

it
 =

=
7

 &
&

 a
ct

iv
eP

la
ye

r
==

 0
)

|
(a

ct
iv

eP
it

 =
=

1
4

&

&
 a

ct
iv

eP
la

ye
r

==
 1

))
{

}e
ls

e{

ac

ti
ve

P
la

ye
r

=
1

 -
 a

ct
iv

eP
la

ye
r;

}

}e
ls

e
if

(k
ey

 =
=

1
5

){

//

R
es

et

//

In
it

ia
lis

e
b

o
ar

d
 w

it
h

 t
w

o
 s

ee
d

s
p

er
 p

it
, e

xc
lu

d
in

g
m

an
ca

la

fo

r(
LE

D
D

ri
ve

rP
it

C
o

u
n

t
=

 1
; L

ED
D

ri
ve

rP
it

C
o

u
n

t
<

 1
5

; L
ED

D
ri

ve
rP

it
-

C
o

u
n

t+
+)

{

p

it
D

at
a[

LE
D

D
ri

ve
rP

it
C

o
u

n
t]

 =
 1

;

}

p
it

D
at

a[
7

]
=

0
;

p

it
D

at
a[

1
4

]
=

0
;

//

Se

n
d

 s
ta

rt
in

g
se

ed
s

to
 b

o
ar

d

fo

r(
d

el
ay

C
o

u
n

t
=

0
; d

el
ay

C
o

u
n

t
<

1
0

; d
el

ay
C

o
u

n
t+

+)
{

w
ri

te
LE

D
s(

);

}

ac

ti
ve

P
la

ye
r

=
0

;

}e

ls
e

if
(k

ey
 =

=
1

6
){

//

R

es
et

//

In

it
ia

lis
e

b
o

ar
d

 w
it

h
 t

w
o

 s
ee

d
s

p
er

 p
it

, e
xc

lu
d

in
g

m
an

ca
la

fo
r(

LE
D

D
ri

ve
rP

it
C

o
u

n
t

=
 1

; L
ED

D
ri

ve
rP

it
C

o
u

n
t

<
 1

5
; L

ED
D

ri
ve

rP
it

-
C

o
u

n
t+

+)
{

p
it

D
at

a[
LE

D
D

ri
ve

rP
it

C
o

u
n

t]
 =

 2
;

}

p

it
D

at
a[

7
]

=
0

;

p
it

D
at

a[
1

4
]

=
0

;

//

Se
n

d
 s

ta
rt

in
g

se
ed

s
to

 b
o

ar
d

Proof of Concept Program

David Piggott - iBantumi

122

fo

r(
d

el
ay

C
o

u
n

t
=

0
; d

el
ay

C
o

u
n

t
<

1
0

; d
el

ay
C

o
u

n
t+

+)
{

w
ri

te
LE

D
s(

);

}

ac

ti
ve

P
la

ye
r

=
0

;

}e

ls
e

if
(k

ey
 =

=
1

7
){

//

R

es
et

//

In

it
ia

lis
e

b
o

ar
d

 w
it

h
 t

w
o

 s
ee

d
s

p
er

 p
it

, e
xc

lu
d

in
g

m
an

ca
la

fo
r(

LE
D

D
ri

ve
rP

it
C

o
u

n
t

=
 1

; L
ED

D
ri

ve
rP

it
C

o
u

n
t

<
 1

5
; L

ED
D

ri
ve

rP
it

-
C

o
u

n
t+

+)
{

p
it

D
at

a[
LE

D
D

ri
ve

rP
it

C
o

u
n

t]
 =

 3
;

}

p

it
D

at
a[

7
]

=
0

;

p
it

D
at

a[
1

4
]

=
0

;

//

Se
n

d
 s

ta
rt

in
g

se
ed

s
to

 b
o

ar
d

fo
r(

d
el

ay
C

o
u

n
t

=
0

; d
el

ay
C

o
u

n
t

<
1

0
; d

el
ay

C
o

u
n

t+
+)

{

w

ri
te

LE
D

s(
);

}

ac
ti

ve
P

la
ye

r
=

0
;

}e
ls

e
if

(k
ey

 =
=

1
8

){

//

R
es

et

//

In
it

ia
lis

e
b

o
ar

d
 w

it
h

 f
o

u
r

se
ed

s
p

er
 p

it
, e

xc
lu

d
in

g
m

an
ca

la

fo

r(
LE

D
D

ri
ve

rP
it

C
o

u
n

t
=

 1
; L

ED
D

ri
ve

rP
it

C
o

u
n

t
<

 1
5

; L
ED

D
ri

ve
rP

it
-

C
o

u
n

t+
+)

{

p

it
D

at
a[

LE
D

D
ri

ve
rP

it
C

o
u

n
t]

 =
 4

;

}

p
it

D
at

a[
7

]
=

0
;

p

it
D

at
a[

1
4

]
=

0
;

//

Se

n
d

 s
ta

rt
in

g
se

ed
s

to
 b

o
ar

d

fo

r(
d

el
ay

C
o

u
n

t
=

0
; d

el
ay

C
o

u
n

t
<

1
0

; d
el

ay
C

o
u

n
t+

+)
{

w
ri

te
LE

D
s(

);

}

ac

ti
ve

P
la

ye
r

=
0

;

}

}

}

Proof of Concept Program

David Piggott - iBantumi

123

Component Research - On/off button

As the power management is implemented entirely in software*, I
could just as easily choose a momentary action switch in place of a
toggle action switch. With this in mind, I looked at all the switch types
available from Rapid, as there are essentially no criteria that the
switch must match other than good aesthetics. The vandal resistant
switch pictured opposite meets this.

There are numerous types of vandal resistant switch available (all mo-
mentary action) so I simply chose the cheapest, at £3.65 (prices range
up to £8.50).

* Game logic PIC determines if game should be on/off and then
switches LCD (powered by PIC output) and pit boards (via relay) ac-
cordingly, using sleep mode to conserve power so that in standby the
theoretical current drawn is less than 2µA.

Vandal resistant switches
Stainless steel, vandal resistant switches for
applications in public environments where
standard switches would be frequently dam-
aged or vandalised.
 Typically used for door entry systems,

elevators, vending machines etc.
 Three types of switch profile – flat,

domed or prominent
 IP66 sealed and IP68 sealed available

Price: £3.65 for cheapest

David Piggott - iBantumi

124

Component Research - Power Supply

When choosing a power supply, it is important that the supply is capable of providing
enough current for the game to operate at full capacity; that is, with all LEDs on. This way I
will be able to make use of the pitboards for special effects at certain points in play (such
as when the game is over, to indicate the winner).

The maximum theoretical current drawn by the device is 25mA for 336 LEDs. Using an ap-
proximation of 2V for the p.d. across the LEDs, this is 25 x 10-3 x 2 x 336 = 16.8W. Power
used by the microcontrollers/LCD is negligible.

Assuming an arbitrary 80% regulator efficiency, this means a current of 1.75A ((16.8/80 x
100) / 12) on the 12V side of the regulators, so the 30-60W Mini desktop switch mode PSU
opposite should be more than adequate. The reason I have chosen this one rather than a
lower power one is that I will not actually be ordering a power supply at all, in an effort to
prevent further expenditure; this is the power supply used in my AS Heavy Sleeper’s Alarm
Clock, so I shall simply use that (and no doubt purchase one myself later so I can use both
the alarm clock and iBantumi simultaneously).

In normal gameplay, the power used by the pitboards should only be 25 x 10-3 x 2 x 24 =
1.2W. This is a current of 0.125A ((1.2/80 x 100) / 12) on the 12V side of the regulators.

From the Wikipedia article on AA batteries (http://en.wikipedia.org/wiki/AA_battery):

There will be eight AA cells in series, so the estimate runtime for the game on battery
power is (assuming 2.35Ah average capacity) 2.35/0.125 = 18.8 hours of normal gameplay!

30-60W Mini desktop switch mode
PSU
A range of high
quality switch
mode PSUs that
have 3-pin IEC in-
put connectors.
 Wide range

input voltage
90 to 264V
AC at 47 to
63Hz

 Short circuit,
over voltage and over current protection

 Typically 80% efficient
 Fully regulated output
 Connector, 2.1 x 5.5 x 12mm female barrel
 Dimensions 120 x 60 x 36mm
 IEC, TUV, UL approved

Price: £17.75 for 12V 5A version Alkaline batteries from 1700 mAh to almost 3000 mAh cost a little more, but last proportionally

longer [than other battery chemistries].

http://en.wikipedia.org/wiki/AA_battery

David Piggott - iBantumi

125

Component Research - Power Socket

I had intended to use the power socket pictured opposite, but at the time
of ordering they were out of stock, and with a looming deadline the most
sensible option was to substitute it with the power socket shown below,
despite the significantly higher cost.

Heavy duty DC power socket
High quality DC power sockets featuring
nickel plated bodies and single hole fixing.
 Suitable for panel thickness up to

2.5mm
 Panel cut-out 11mm
 Supplied with hexagonal fixing nut

Price: £0.55

DC Power sockets
A Professional grade panel mounting DC
power sockets in 2.1 and 2.5mm sizes, suit-
able with Switchcraft power plugs 20-0882 to
20-0892.
 Panel mounting
 Maximum panel thickness is 3.1mm
 Switched
 Contacts rated at 5A 12V DC
 Switchcraft types 722A and 712A

Price: £2.52

David Piggott - iBantumi

126

Component Research - Piezo & Resonator

As already discussed with the development of artwork 0.3, an external resonator is re-
quired for the main game logic PIC. In advance preparation for the event that I do have
time for, and succeed in developing an AI player, it will be beneficial to be running the PIC
at maximum speed to reduce processing times.

The maximum rated speed of the PIC18F252 is 40MHz, but the highest speed ceramic
resonator available from Rapid is 32MHz, so instead I have chosen a 10MHz resonator and
will configure the oscillator module in PLL (phase locked loop) mode for an effective speed
of 40MHz.

While waiting for the resonator to arrive, I have been using a 4MHz resonator as school
stock these for 28 and 40 pin PICAXEs (hence the delay timing in the proof of concept pro-
gram being as it is).

The piezo resonator will be used
to provide audible feedback dur-
ing play and navigation of the
menus.

When choosing a piezo transducer
I was looking for three things;
1. High loudness.
2. On flying leads (i.e. not PCB

mounting).
3. No built in drive circuit (the

PIC18F252 will drive it).

3-pin Ceramic resonators (ACT)
A range of 3-pin ceramic
resonators supplied with
built-in capacitors.
 No need for load

capacitance when
making up oscilla-
tor circuits

 Leads on 2.5mm
pitch spacing

Price: £0.25 for 10MHz version

Miniature piezo transducer
A miniature flange mounting
piezo audio transducer with
flying leads.
 Housed in a compact

package
 Requires an external

drive circuit
 Dimensions 29.5x5.2mm
 Soundtech type SEP-1126

Price: £0.56

Operating voltage (Vp-p max) 30V

Sound output 95dB at 10cm

Resonant frequency 2.8kHz

Current consumption 8mA

Capacitance (±30%) 18,000pF

Weight 4g

Operating temperature –20°C to +60°C

David Piggott - iBantumi

127

Case Development

One of the specification points was that the case will be based on initial case idea
six. This is shown in figure 44.0 as a reminder.

In order to develop my ideas further, I set about producing an exact model of
every component that will be in the case, using PTC ProDESKTOP. This allowed
me to make geometrically accurate designs and photorealistic renders of my
ideas.

Figure 44.1 shows the initial shell idea I came up with; it’s a two part structure
consisting of an upper and lower, as shown in figure 44.2.

Unfortunately it would have been impractical to attempt production of this with
the available tools and equipment; the pieces are too big for CAMM so the holes
would have to be cut by hand which would be inaccurate. Additionally, creating
the wide bends with the line bender would amplify any inaccuracies in the bend-

ing process and so result in a poor fit.

For these reasons it was necessary to create an alternative case design that a)
doesn’t require wide bends and b) doesn’t require large internal cut outs (due to
it being too
large for
CAMM).

Figure 44.0 - Case development starting point

Figure 44.1 - Initial shell idea Figure 44.2 - Initial shell idea sections

David Piggott - iBantumi

128

Case Development

Component Creation
As already stated, I created exact models of every component that will be in the case. It is important that I make the meaning of the word
‘component’ in this context clear; I made a new component for every different material encountered. For example, when creating resistors, I
didn’t make the entire resistor in one design file; I broke it down into; 1) the ceramic body 2) the pins either side 3) the colour bands (one de-
sign for each colour of band, of each size (depends on whether the band is at the centre or end of the body). The reasons for doing this are
twofold. Firstly, it generally makes the modelling process quicker, easier and keeps designs more organised, but secondly and more impor-
tantly, when it comes to creating photorealistic renders in ProDESKTOP, there are only two ways of settings material and colour properties;
the first being face by face, and the second being component by component. With this in mind, it makes a lot more sense to make a new com-
ponent for every different material encountered in a part, because it speeds up the processing of setting colour and material properties by
orders of magnitude - selecting and setting properties for individual faces, particularly on complex components (as many of mine are) would
take huge amounts of time, whereas a component can be selected once, its properties set, and these properties are applied to all copies of
the component in the model.

Overleaf I have included a picture of the majority of the components created. However, this time when I say component I actually mean
things such as an entire resistor assembly, comprising of ceramic body, colour bands, and pins, or an entire LED (as opposed to the anode and
cathode inside the lens, the lens and the pins). The reason for doing this is that a picture of a single resistor pin or band is not very interesting.
As an example of the difference, pictured below is the power button’s constituent parts, and the assembly. There are infact 157 ProDESKTOP
design files for this project - a few being assembles of sub components - the rest being components.

Figure 44.3 - Power button components Figure 44.4 - Assembly

David Piggott - iBantumi

129

Case Development

David Piggott - iBantumi

130

Case Development

Pit Board Assembly
Prior to creating the actual case design model, I assembled a model of the pit boards and saved this as a separate file. The reasoning behind
this is that ProDESKTOP processes the position of every component in a design when you update any single component. The consequence of
this is that the program becomes
very sluggish (think five seconds
per frame here!) when dealing
with designs with hundreds of
components in. By creating a
separate pit board assembly, I
was able to avoid such a massive
performance hit when assembling
the case design model, because
ProDESKTOP treats the pit board
assembly component as a single
solid, rather than processing each
subcomponent. Nevertheless, I
still encountered processing de-
lays when creating the case de-
sign model when using this pit
board assembly, because there
are so many components in the
case design model in addition to
the pit boards. Figure 44.5 shows
the pit board assembly.

Figure 44.5 - Pit board assembly

David Piggott - iBantumi

131

Case Development

Case Panels

Shown in figures 44.6 and 44.7 respectively are engi-
neering drawings of the lower and upper case panels.

All linear dimensions are either marked or can be de-
rived from those marked. I have not marked the dimen-
sions for mounting holes on to avoid cluttering.

Figure 44.6 - Lower panel

Figure 44.7 - Upper panel

David Piggott - iBantumi

132

Case Development

Case Panels

Figure 44.9 - Pit end side panel Figure 44.10 - Game logic end side panel

Figure 44.11 - Player one side panel Figure 44.12 - Player two side panel

Figure 44.8 - Battery box mounting panel

David Piggott - iBantumi

133

Case Development

Figure 44.13 - Trimetric view - Transparent

David Piggott - iBantumi

134

Case Development

Figure 44.14 - Trimetric view - Basal cross section - Transparent

David Piggott - iBantumi

135

Case Development

Figure 44.15 - Trimetric view - Frontal cross section - Transparent

David Piggott - iBantumi

136

Case Development

Figure 44.16 - Trimetric view - Lateral cross section - Transparent

David Piggott - iBantumi

137

Case Development

Figure 44.17 - Frontal view - Transparent

David Piggott - iBantumi

138

Case Development

Figure 44.18 - Lateral view - Transparent

David Piggott - iBantumi

139

Case Development

Figure 44.19 - Basal view - Transparent

David Piggott - iBantumi

140

Case Development

Figure 44.20 - Trimetric rendering

David Piggott - iBantumi

141

Case Development

Figure 44.21 - Frontal rendering with side panels removed to minimise reflections

David Piggott - iBantumi

142

Case Development

Figure 44.22 - Lateral rendering

David Piggott - iBantumi

143

Case Development

Figure 44.23 - Basal rendering with upper panel removed to minimise reflections

David Piggott - iBantumi

144

Case Development

Development Evaluation
As I have only designed, and not yet produced the case, I am not yet in a position to evaluate the design itself - just the process.

Short of adding solder blobs, PCB tracks, inter-board wires, and components on the back of the LCD to the model, it cannot really be any more
accurate and detailed than what I have done. In this regard, the design is perfect.

Aside from the slowness of ProDESKTOP due to the model complexity, the only real problem I had was when it came to rendering; the album
mode of ProDESKTOP leaves something to be desired when it comes to materials selection and lighting options. This is most evident with the
acrylic panels - in the model they are actually set as glass because this is the only transparent material available. This caused all sorts of prob-
lems due to the difference in optical properties - it was a real challenge to create renders in which the components inside were reasonably
visible (not hidden behind the reflection of an ’acrylic’ panel) and the limited number of lighting options didn’t help the issue. Another exam-
ple is the PCBs - there is no fibre glass material, so after some trial and error found graphite to be the best substitute.

In the end, I concluded that the only two ways of making the components inside visible are either a) using default lighting, which is not photo-
realistic or b) hiding the ‘acrylic’ panel blocking the view. Note however that the lateral rending is done with room lighting and the acrylic
panel is not hidden - it didn’t look right without the panel and I/O.

David Piggott - iBantumi

145

Case Production

To CAMM or not to CAMM
As mentioned at the start of case development, the design is simply too big to fit on the CAMM machine-bed and mill parts in one run without
turning them around - which would lead to inaccuracies. I decided to either CAMM everything, or CAMM nothing - the reasoning behind this
being that I’ve found the majority of time spent with CAMM is refamiliarisation, so it would make sense to get the biggest return on this in-
vestment. However, I decided not to use CAMM.

Rectangular panels
The first step was to draw up a cutting list
for the seven panels - all are 3mm acrylic
with the exception of the lower panel which
is 5mm for rigidity. These were cut with the
bandsaw.

Rectangular panels with lines on
Next I marked up the lines along which cuts
were to be made or holes added. I did this
with a set square, ruler and medium tip per-
manent marker , using the ProDESKTOP de-
sign as reference. All holes could then be
marked from points of intersection - more
accurate than trying to simultaneously en-
sure two distances are correct.

Figure 45.0 - Lower panel with mark-up on

David Piggott - iBantumi

146

Case Production

Rectangular panels with holes in
The holes in the lower panel are 3mm diameter for the 3mm diameter, countersunk,
crosshead, 10mm long screws used to attach it to the 20mm standoffs of the pit boards
and game logic board. I drilled these using a pillar drill, and then changed to a (powered)
hand drill for the countersinking, because it wastes more slowly and so would reduce the
chance of countersinking too deep (I don’t think the travel restriction on the pillar drill
would have been accurate enough for this). After having done this, I mounted the pit
boards and game logic board on the lower panel to check they fitted. This is shown in fig-
ure 45.1.

Panels with cut-outs
For the panel cut-outs (for pit buttons, battery boxes, menu buttons, and ICSP header
pins), I used the hegner saw. For the internal cut-outs, I first drilled a 3mm hole that I
could then put the blade through. These are shown below.

Figure 45.1 - Pit boards and game logic board
mounted on lower panel

Figure 45.2 - Upper panel with pit
button cut-outs

Figure 45.3 - Lower panel with bat-
tery box cut-out

Figure 45.4 - Upper panel with
menu button cut-out

Figure 45.5 - I/O panel
with ICSP header cut-out

David Piggott - iBantumi

147

Case Production

Edge smoothing & polishing
To tidy up and smooth the edges of the panels, I used rectangular files (primary and then secondary cut) for the outer edges and those of
large enough internal cut-outs. I used needle files for the ICSP header cut-out as it was too small for rectangular files. Having done this, I used
fine wet and dry paper with a sanding block to prepare the edges for polishing with the plastic polishing wheel.

Side panels
I created the tabs such that they would be 3cm long to start with, and I could then shorten them to fit the case. The body of the side panels is
4cm wide, so I started with 7cm wide panels and cut out from the upper corners and centre with the hegner saw so that I was left with the
required tabs. I then filed and polished them in the same way as the upper, lower and battery box panels, before using the strip bender to
heat them at the bending point until soft enough to bend using an MDF block and the edge of a work bench as a former to create the required
radius.

Having done this, I compared the tabs with the upper panel in situ on the pit boards to see how much acrylic would need trimming. This I
marked on with a permanent marker and then cut away using the hegner saw - which was tricky due to the angle. I then refiled these edges
before again holding them to the upper panel to mark on the mounting holes, which I drilled with a (powered) hand drill as the angle meant it
couldn’t be done with a pillar drill.

For the end panel with I/O (power socket, ICSP header and power button), I drilled the power socket hole and ICSP header mounting holes
with standard drill bits. However, the power button required a 19mm hole which was too big to drill using a standard drill bit as the stress
would have shattered the panel. Instead, I used an 18mm spade bit and then used a reamer to increase it to 19mm so the power button
would fit.

David Piggott - iBantumi

148

Case Production

Case assembly
With the panels complete, it was time to assemble the case. As the construction is centred around the PCBs, this was more a job of building it
around them as it was a job of installing them in it. The following table details the screw type used for each fixing:

Figure 45.7 - Upper and lower
panels attached Figure 45.6 - End panels attached

Fixing (between) Diameter (mm) Length (mm) Head profile Head pattern

Lower panel, pit & game logic board
standoffs, battery box panel standoffs

3 10 CS Cross

Side panels & upper panel 2.5 10 Pan Flat

ICSP board and I/O panel 3 15 CS Cross

LCD & upper panel 2.5 20 Pan Flat

Menu button standoffs & upper panel 3 5 Pan Cross

Battery box panel & battery boxes 3 10 CS Cross

David Piggott - iBantumi

149

Case Production

Power supply
I connected the two battery boxes in series by soldering the positive wire of one to negative of the other, with heatshrink over the joint to
prevent short circuits. I then extended the remaining two wires in the same fashion as they were not long enough to reach the terminal block
on the game logic board, and using a drill twisted the pair together for neatness. The power supply system is discussed in more detail in the
evaluation.

Switch remapping
I realised when developing the idea in ProDESKTOP that the game logic board would me much better rotated 180° from how I had planned for
it when I created the artwork, so I designed and assembled the case like with it like that. However, as a result the two ribbon cables that go to
the pit board switches were cross over and making the case look messy, so I desoldered them and swapped them over. The case looks much
tidier as a result. However this did mean that I had to update the column and row mappings that I had created for the switch arrays. This is
detailed in the programming section that follows case production.

General tidy up
I shortened the length of the LCD and ICSP wires such that they matched the length of the power socket and switch wires; the amount by
which the upper portion of the case can be separated from the lower is limited by the minimum wire length, so the excess was doing no good.
I also wrapped all wires in spirowrap, except ribbon cables.

David Piggott - iBantumi

150

Case Pictures

Figure 46.0 - Trimetric photograph

David Piggott - iBantumi

151

Case Pictures

Figure 46.1 - Frontal photograph

David Piggott - iBantumi

152

Case Pictures

Figure 46.2 - Lateral photograph

David Piggott - iBantumi

153

Case Pictures

Figure 46.0 - Basal photograph

David Piggott - iBantumi

154

Time Usage & Unfortunate Circumstances

ID Task Name Start Finish Duration

Nov 2007 Dec 2007 Jan 2008 Feb 2008 Mar 2008 Apr 2008

4/11 11/11 18/11 25/11 2/12 9/12 16/12 23/12 30/12 6/1 13/1 20/1 27/1 3/2 10/2 17/2 24/2 2/3 9/3 16/3 23/3 30/3 6/4

1

2

3

4

5

7

11

13

23d06/01/200815/12/2007Christmas Holidays

9d17/02/200809/02/2008Spring Half Term

18d06/04/200820/03/2008Easter Holidays

31d01/12/200701/11/2007Project setup & initialisation

162d10/04/200801/11/2007Research

38d22/02/200816/01/2008Schematic & Artwork development

10d19/03/200810/03/2008Case production

4d10/04/200807/04/2008Completion of documentation

10 11d07/03/200826/02/2008Case dimensioning & model creation

6 44d15/01/200803/12/2007
Register control protocol & code

development

9 6d25/02/200820/02/2008Game logic code proof of concept

12 18d06/04/200820/03/2008
Time allocated for addition of LCD

menus & AI player to game logic code

14 4d10/04/200807/04/2008
Replacement PIC18F252 ordered (x2)

& completion of game logic code

8 19d22/02/200804/02/2008PCB production

Figure 47.0 - Time usage

David Piggott - iBantumi

155

Time Usage & Unfortunate Circumstances

Time invested in the project
Rather than estimating the amount of time spent on the various stages of the project and summing these, I have estimated my time usage by
estimating the amount of hours per week spent on the project and multiplying by the number of weeks. Although there will of course have
been some variance, I have been reasonably consistent throughout with my work rate. Figure 48.0 shows the estimate.

The estimate of 45 minutes per evening is of course the part which introduces most inaccuracy - some evenings I would do no work on it,
while one or two weeks (for example during pit board production) I spent at least four hours every night populating the boards (the lengthiest
task by far was stripping and tinning the ends of 672 strands of ribbon cable for the links between register PICs and LEDs in preparation for
joining the upper and lower boards - which by itself took surprisingly little time, only an hour or two).

Although I did work on the project during the Christmas, half-term and then Easter holidays, I think my weekly average would have been
lower than that during term time. If my estimate is inaccurate, so that it is at least an underestimate, I am completely discounting holidays
from it. From figure 46.0 it can be seen that there were 16 weeks at school spent on the project, so multiplying by my estimate of 945 min-
utes per week, this leads to a total estimate of 15120 minutes, or 252 hours spent on the project.

Estimate of total time invested in project = 252 hours

Description Duration Quantity Total duration

D&T lessons 35 minutes 8 280 minutes

Free periods 35 minutes 10 350 minutes

Evenings 45 minutes 7 315 minutes

Sub total: One week 945 minutes

Total: Sixteen weeks 15120 minutes/252 hours

Figure 48.0 - Estimate of time invested in project

David Piggott - iBantumi

156

Time Usage & Unfortunate Circumstances

Unfortunate Circumstances
Figure 47.0 shows my actual time usage throughout the whole project. It can be compared with figures 2.0, 8.0 and 42.0 respectively to see
how my plans for the initialisation, development and production stages differed from my actual time use.

My management of time has been constantly changing throughout the project, as would be expected. During project initialisation, I had very
aggressively scheduled the initialisation and development stages to allow as much time as possible for the production of PCBs and casing.
However, as detailed on the page title “Development Dependencies”, it became apparent to me during development that I could not develop
programs and artworks and then produce PCBs and a casing. Due to the nature of the project, the development and production phases were
very strongly interlinked and so development and production effectively merged into one stage.

During the development stages, the deadline for the coursework was altered and moved forward to 10th April. This is the reason that on the
initialisation and development timeplans, the last task, “Completion of documentation” is scheduled for completion on 19th March - the origi-
nal deadline.

The main purpose of this page is to highlight task 12 of figure 47.0 - “Time allocated for addition of LCD menus & AI player to game logic
code”. I had specifically scheduled the final stages of the project such that I would take advantage of the Easter holidays that were between
the original and revised deadlines - my intention was to complete case production before the holidays, making use of the workshops while
available, and then complete the game logic code development at home during the holidays, as the only tool required for this was the PICKit 2
programmer.

Trouble struck when the PIC18F252 that was in the game logic board stopped communicating with the PICKit 2. I tried every thing I could think
of to get it working; programming from the PICKit 2 standalone application and from MPLAB IDE, programming with it self-powered and with
the 12V supply attached. I tried every available software version for both MPLAB IDE and the PICKit 2 standalone application, but nothing
worked. A problem similar to that which I was experiencing was described in the release notes for MPLAB 8.02, but the suggested work
arounds didn't work, so I concluded my problems were due to a different cause.

David Piggott - iBantumi

157

Time Usage & Unfortunate Circumstances

To verify that there was no fault with the PICKit 2 programmer, I put a spare PIC16F882 in my register prototype board and programmed it
with a copy of the register code; this worked fine, confirming my suspicions that the problem was with the PIC18F252. I swapped it out for my
only spare, which solved the problem; I was able to download programs once again. However this didn’t last long as shortly after (a few days),
I experienced exactly the same problem with the spare PIC18F252 I had put in, only this time I didn’t have another spare to swap it out for.

This in itself was unfortunate, but the situation is made more severe by the fact that his happened during the Easter holidays while I was away
from school and so unable to order replacements. I should clarify the situation here by pointing out that although the PICKit 2 programmer
would no longer communicate with either of these PIC 18F252s, the programs that I had already put on them continued to successfully exe-
cute - both have copies of the game logic proof of concept code - the difference between the two being that on one of them, the menu button
that would start a game with four seeds per pit is programmed to start a game with twenty-four seeds per pit; this was not intended for
gameplay, merely as a way to test the pit board power supply under full load.

Not having any PIC18F252s to test the new game logic code I was working on severely effected the progress I was able to make during the
Easter holidays, as I had to perform all testing within MPLAB using the MPLAB SIM debugging plug-in. I was able to get some parts of the game
logic code written and tested using this, such as a frame buffer and an update to the pit board driver, designed to display the quantity of
seeds in a pit as a column of tens and units if the number exceeds twenty-four; necessary for games with a total of more than twenty-four
seeds in play (such as when starting a game with three or more seeds per pit).

However I was unable to test parts of the program such as the LCD driver and as a consequence, was unable to start development of the
menu systems or the AI player, because this would really have required that I could test the program in the target application, not just a de-
bugger.

At the time of writing this (two days before the deadline), I have just ordered two more PIC18F252s in the hope that they will arrive tomor-
row, giving me one day before the deadline in which to try and get as much of game logic code developed (LCD menus & AI player). I am faced
with a dilemma because the documentation and practical are due in at the same time, yet I will only know the outcome of my program devel-
opment attempt moments before the deadline - this begs the question of what to document; the proof of concept program that I wrote,
which already works, or the full game logic code including LCD menus and AI player which I hope to develop over the next two days.

David Piggott - iBantumi

158

Component Usage

 Description Supplier Rapid Order Number Unit Cost (£) Quantity Total (£)

PIC16F882-E/SP Microchip Direct n/a 0.94 20 18.80

PIC18F252-I/SP Rapid 73-3302 4.00 2 8.00

PICKit 2 Programmer Rapid 97-0101 44.00 1 44.00

5mm Ultrabright Red LEDs Rapid 55-0134 0.09 144 12.96

5mm Ultrabright Blue LEDs Rapid 55-1662 0.28 144 40.32

5mm Ultrabright White LEDs Rapid 55-1640 0.30 48 14.40

Bridge Rectifier (3A, 200V) Rapid 47-3206 0.14 1 0.14

Bridge Rectifier (8A, 100V) Rapid 47-2894 0.30 2 0.60

L78S05CV +5V 2A Voltage Regulator Rapid 47-3302 0.44 4 1.76

Square button 12x12mm tactile switches (PCB mounting) Rapid 78-0640 0.19 16 3.04

Buttons for 12x12mm tactile switches (black, square) Rapid 78-1185 0.05 16 0.80

Serial LCD module Rapid 13-1266 14.00 1 14.00

Battery boxes with covers (4x AA) Rapid 18-2913 0.38 2 0.76

DC Power sockets (2.1mm) Rapid 20-0878 2.52 1 2.52

Vandal resistant switches (Proud fit 22mm) Rapid 78-1683 3.65 1 3.65

3-pin Ceramic resonator (10MHz) Rapid 90-0675 0.25 1 0.25

 Total: £166.00

Figure 48.0 - Component summary

David Piggott - iBantumi

159

Component Usage

Money invested in the project
Figure 48.0 shows all components that either a) I had to order specifically or b) are expensive enough to justify inclusion in the table (e.g the
serial LCD module - stocked by school but expensive nonetheless). I maintained the table during development for my own reference, and have
included it for the sake of documentation completeness as I consider one measure of the quality of documentation to be the ease with which
a reader could produce the product described.

At a total cost of £166, not including materials such as fibre glass board for PCBs and acrylic for the case construction, iBantumi is not the
cheapest of projects. As I am not the one paying, it is not really my position to pass judgement on whether it was worth the cost, but a serious
point in its favour is that having nearly finished the project, had I known at the start the approximate cost and been told that I would have to
pay for it, I would definitely do so because I have been able to learn so much from undertaking it.

David Piggott - iBantumi

160

Game Logic Program Development

After having constructed the case, I swapped around which side of the game logic board the
ribbon cables from the pit boards connected to, purely for the sake of tidiness in the case.
This of course meant remapping the switch array addresses. Figure 49.0 shows the new ad-
dresses.

When creating the game logic code, I created functions for control of each hardware com-
ponent; one for sending numerical values to the pit LEDs, one for scanning the menu/switch
buttons, one for sending 24 bit variables of the ’short long’ type (where each bit is an LED)
to a pit (used when the numerical value exceeds 24, to show columns of tens and units).

I also created functions for parts of the game logic, such as ’move’ and ’AIMove’ functions to sow seeds anticlockwise around the board
(which is a 15 element array - the first element being the ’hand’ and elements 1-14 being pits).

The ’AI’ code is incredibly basic (as I only had 2 hours to write it in) and works simply by testing the result of moving each of the six pits be-
longing to the computer player to see which will result in the biggest gain for the mancala, and then moving with this pit.

In terms of readability and modularity, the code could still be improved. The only justification for this is that I finalised the code in the last 24
hours leading up to the deadline, as the replacement PIC18F252s arrived literally 28 hours before the deadline.

Finally, the version of the program that I actually downloaded to iBantumi contains one bug; when a number of seeds of sufficient number are
sown from red’s side, around the board such that they pass the mancala and should come back onto red’s side, they don’t, and instead seem
to ’disappear’ from the board. I was able to identify the cause of this, and fix it; in the code in this documentation, the bug is fixed, but unfor-
tunately I was already on to the last PIC18F252 that remained programmable at this point, and when I came to download the fixed version,
this too had failed with the same symptoms as the others, so I have no programmable PIC18F252s remaining, and thus program development
was frozen here.

Figure 49.1 shows the game logic code.

 RC0 RC1 RC2 RC3

RC4 Pit 13 Pit 10 Pit 3 Pit 6

RC5 Pit 11 Pit 8 Pit 1 Pit 4

RC6 Pit 12 Pit 9 Pit 2 Pit 5

RB7 Menu 1 Menu 2 Menu 3 Menu 4

Figure 49.0 - Switch array addresses table

David Piggott - iBantumi

161

Game Logic Program Development
#i

n
cl

u
d

e
<

p
18

cx
xx

.h
>

#i

n
cl

u
d

e
<

d
el

ay
s.

h
>

#i

n
cl

u
d

e
<

sw
_u

ar
t.

h
>

 /*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**

P

ro
gr

am
:

iB
an

tu
m

i G
am

e
Lo

gi
c

C
o

d
e

P

ro
je

ct
:

iB
an

tu
m

i

A
u

th
o

r:

D

av
id

 P
ig

go
tt

D
at

e:

3
0

/0
3

/0
8

 **

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*/

 //

So
ft

w
ar

e
U

A
R

T
d

el
ay

 d
ef

in
it

io
n

s
 vo

id

D
el

ay
TX

B
it

U
A

R
T(

){

D

el
ay

1
K

TC
Yx

(4
);

D
el

ay
1

0
0

TC
Yx

(1
);

D
el

ay
1

0
TC

Yx
(5

);

D

el
ay

1
TC

Y(
);

D
el

ay
1

TC
Y(

);

D

el
ay

1
TC

Y(
);

D
el

ay
1

TC
Y(

);

D

el
ay

1
TC

Y(
);

} vo

id

D
el

ay
R

X
B

it
U

A
R

T(
){

} vo

id

D
el

ay
R

X
H

al
fB

it
U

A
R

T(
){

} in

t

ke
y;

ch

ar

ac
ti

ve
P

la
ye

r;

ch
ar

ac

ti
ve

P
it

;
ch

ar

co
u

n
t;

ch

ar

b
it

B
o

ar
d

[1
5

];

ch
ar

A

IS
im

[1
5

];

ch
ar

A

IR
es

u
lt

s[
6

];

ch
ar

A

IG
ai

n
;

ch
ar

A

IP
la

ye
r;

ch

ar

A
IL

is
te

n
;

ch
ar

ar

ra
yC

o
p

yC
o

u
n

t;

 //

H
ar

d
w

ar
e

d
ri

ve
r

p
ro

to
ty

p
es

 ch

ar

ke
yD

ri
ve

r(
vo

id
);

ch

ar

m
o

ve
(v

o
id

);

vo
id

p

ie
zo

D
ri

ve
r(

in
t

fr
eq

u
en

cy
);

vo

id

LE
D

N
u

m
er

ic
D

ri
ve

r(
vo

id
);

vo

id

LE
D

Fr
am

eD
ri

ve
r(

sh
o

rt
 lo

n
g

fr
am

e)
;

Fi
gu

re
 4

9
.1

 -
 G

am
e

Lo
gi

c
C

o
d

e

David Piggott - iBantumi

162

Game Logic Program Development
 //

H

ar
d

w
ar

e
d

ri
ve

r
im

p
le

m
en

ta
ti

o
n

s
 ch

ar

ke
yD

ri
ve

r(
vo

id
){

//

Sc
an

s
ar

ra
y

ad
d

re
ss

ed
 k

ey
s

an
d

 r
et

u
rn

s
co

rr
es

p
o

n
d

in
g

//

p

it
 n

u
m

b
er

 f
o

r
p

it
 k

ey
s

o
r

[2
0

-2
3

]
fo

r
m

en
u

 k
ey

s.

//

R

et
u

rn
s

0
 if

 n
o

 k
ey

 is
 p

re
ss

ed
.

LA

TC
 =

 0
b

0
0

0
1

0
0

0
0

;

sw
it

ch
(0

b
00

0
0

1
1

1
1

 &
 P

O
R

TC
){

ca
se

 0
b

00
0

0
0

0
0

1
:

re
tu

rn
 1

3
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

0
1

0
:

re
tu

rn
 1

0
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

1
0

0
:

re
tu

rn
 3

;

b
re

ak
;

ca

se
 0

b
00

0
0

1
0

0
0

:

re

tu
rn

 6
;

b

re
ak

;

}

LA
TC

 =
 0

b
0

0
1

0
0

0
0

0
;

sw

it
ch

(0
b

00
0

0
1

1
1

1
 &

 P
O

R
TC

){

ca

se
 0

b
00

0
0

0
0

0
1

:

re

tu
rn

 1
1

;

b
re

ak
;

ca

se
 0

b
00

0
0

0
0

1
0

:

re

tu
rn

 8
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

1
0

0
:

re
tu

rn
 1

;

b
re

ak
;

ca

se
 0

b
00

0
0

1
0

0
0

:

re

tu
rn

 4
;

b

re
ak

;

}

LA
TC

 =
 0

b
0

1
0

0
0

0
0

0
;

sw

it
ch

(0
b

00
0

0
1

1
1

1
 &

 P
O

R
TC

){

ca

se
 0

b
00

0
0

0
0

0
1

:

re

tu
rn

 1
2

;

b
re

ak
;

ca

se
 0

b
00

0
0

0
0

1
0

:

re

tu
rn

 9
;

b

re
ak

;

ca
se

 0
b

00
0

0
0

1
0

0
:

re
tu

rn
 2

;

David Piggott - iBantumi

163

Game Logic Program Development

b
re

ak
;

ca

se
 0

b
00

0
0

1
0

0
0

:

re

tu
rn

 5
;

b

re
ak

;

}

LA
TC

 =
 0

b
1

0
0

0
0

0
0

0
;

sw

it
ch

(0
b

00
0

0
1

1
1

1
 &

 P
O

R
TC

){

ca

se
 0

b
00

0
0

0
0

0
1

:

re

tu
rn

 2
1

;

b
re

ak
;

ca

se
 0

b
00

0
0

0
0

1
0

:

re

tu
rn

 2
2

;

b
re

ak
;

ca

se
 0

b
00

0
0

0
1

0
0

:

re

tu
rn

 2
3

;

b
re

ak
;

ca

se
 0

b
00

0
0

1
0

0
0

:

re

tu
rn

 2
4

;

b
re

ak
;

d

ef
au

lt
:

re
tu

rn
 0

;

b
re

ak
;

}

} vo
id

p

ie
zo

D
ri

ve
r(

in
t

fr
eq

u
en

cy
){

//

O
u

tp
u

ts
 a

 p
u

ls
e

o
f

fr
eq

u
en

cy
 f

re
q

u
en

cy
 w

it
h

 f
ix

ed
 le

n
gt

h
 5

00
m

s

in
t

p
ie

zo
D

ri
ve

rO
sc

C
o

u
n

t;

fo

r(
p

ie
zo

D
ri

ve
rO

sc
C

o
u

n
t

=
 0

; p
ie

zo
D

ri
ve

rO
sc

C
o

u
n

t
<=

 f
re

q
u

en
cy

 /
 2

0
; p

ie
-

zo
D

ri
ve

rO
sc

C
o

u
n

t+
+)

{

P

O
R

TB
b

it
s.

R
B

0
 =

 1
;

D
el

ay
1

K
TC

Yx
(2

0
0

0
0

 /
 f

re
q

u
en

cy
);

P

O
R

TB
b

it
s.

R
B

0
 =

 0
;

D
el

ay
1

K
TC

Yx
(2

0
0

0
0

 /
 f

re
q

u
en

cy
);

}
} vo

id

LE
D

N
u

m
er

ic
D

ri
ve

r(
vo

id
){

//

O
u

tp
u

ts
 1

4
 e

le
m

en
t

ar
ra

y
to

 p
it

 b
o

ar
d

//

sh
o

w
in

g
n

u
m

er
ic

 v
al

u
e

ei
th

er
 a

s
n

u
m

b
er

 o
f

LE
D

s

//

lit
, o

r
in

 c
o

lu
m

n
s

o
f

te
n

s
an

d
 u

n
it

s.

in

t

LE

D
N

u
m

er
ic

D
ri

ve
rP

it
C

o
u

n
t;

in
t

LE
D

N
u

m
er

ic
D

ri
ve

rL
ED

C
o

u
n

t;

//

Fr

am
e

d
ef

in
it

io
n

s

David Piggott - iBantumi

164

Game Logic Program Development

sh
o

rt
 lo

n
g

u
n

it
sF

ra
m

e[
9

];

sh

o
rt

 lo
n

g
te

n
sF

ra
m

e[
9

];

u

n
it

sF
ra

m
e[

0
]

=
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

;

u
n

it
sF

ra
m

e[
1

]
=

0
b

01
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
;

u

n
it

sF
ra

m
e[

2
]

=
0

b
01

0
0

0
10

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

;

u
n

it
sF

ra
m

e[
3

]
=

0
b

01
0

0
0

10
0

0
1

0
0

0
0

0
0

0
0

00
0

0
0

0
;

u

n
it

sF
ra

m
e[

4
]

=
0

b
01

0
0

0
10

0
0

1
0

0
0

1
0

0
0

0
00

0
0

0
0

;

u
n

it
sF

ra
m

e[
5

]
=

0
b

01
0

0
0

10
0

0
1

0
0

0
1

0
0

0
1

00
0

0
0

0
;

u

n
it

sF
ra

m
e[

6
]

=
0

b
11

0
0

0
10

0
0

1
0

0
0

1
0

0
0

1
00

0
0

0
0

;

u
n

it
sF

ra
m

e[
7

]
=

0
b

11
0

0
1

10
0

0
1

0
0

0
1

0
0

0
1

00
0

0
0

0
;

u

n
it

sF
ra

m
e[

8
]

=
0

b
11

0
0

1
10

0
1

1
0

0
0

1
0

0
0

1
00

0
0

0
0

;

u
n

it
sF

ra
m

e[
9

]
=

0
b

11
0

0
1

10
0

1
1

0
0

1
1

0
0

0
1

00
0

0
0

0
;

te

n
sF

ra
m

e[
0

]
=

0
b

0
00

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

;

te
n

sF
ra

m
e[

1
]

=
0

b
0

00
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
;

te

n
sF

ra
m

e[
2

]
=

0
b

0
00

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

;

te
n

sF
ra

m
e[

3
]

=
0

b
0

00
1

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
00

0
0

0
;

te

n
sF

ra
m

e[
4

]
=

0
b

0
00

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

00
0

0
0

;

te
n

sF
ra

m
e[

5
]

=
0

b
0

00
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
10

0
0

0
;

te

n
sF

ra
m

e[
6

]
=

0
b

0
01

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

10
0

0
0

;

te
n

sF
ra

m
e[

7
]

=
0

b
0

01
1

0
0

1
1

0
0

0
1

0
0

0
1

0
0

0
10

0
0

0
;

te

n
sF

ra
m

e[
8

]
=

0
b

0
01

1
0

0
1

1
0

0
1

1
0

0
0

1
0

0
0

10
0

0
0

;

te
n

sF
ra

m
e[

9
]

=
0

b
0

01
1

0
0

1
1

0
0

1
1

0
0

1
1

0
0

0
10

0
0

0
;

//

Se

n
d

 s
ta

rt
 b

it

P

O
R

TA
b

it
s.

R
A

0
=

1
;

D

el
ay

1
0

TC
Yx

(1
0

0
);

P
O

R
TA

b
it

s.
R

A
0

=
0

;

D
el

ay
1

0
TC

Yx
(2

5
);

fo
r(

LE
D

N
u

m
er

ic
D

ri
ve

rP
it

C
o

u
n

t
=

 1
; L

ED
N

u
m

er
ic

D
ri

ve
rP

it
C

o
u

n
t

<=
 1

4
; L

ED
N

u
m

er
ic

-
D

ri
ve

rP
it

C
o

u
n

t+
+)

{

if

(b
it

B
o

ar
d

[L
ED

N
u

m
er

ic
D

ri
ve

rP
it

C
o

u
n

t]
 <

 2
5

){

fo

r(
LE

D
N

u
m

er
ic

D
ri

ve
rL

ED
C

o
u

n
t

=
0

; L
ED

N
u

m
er

ic
D

ri
ve

rL
ED

C
o

u
n

t
<

(2
4

-
b

it
B

o
ar

d
[L

ED
N

u
m

er
ic

D
ri

ve
rP

it
C

o
u

n
t]

);
 L

ED
N

u
m

er
ic

D
ri

ve
rL

ED
C

o
u

n
t+

+)
{

P
O

R
TA

b
it

s.
A

N
0

 =
 1

;

D

el
ay

1
0

TC
Yx

(7
5

);

P
O

R
TA

b
it

s.
R

A
0

=
0

;

D

el
ay

1
0

TC
Yx

(7
5

);

}

fo

r(
LE

D
N

u
m

er
ic

D
ri

ve
rL

ED
C

o
u

n
t

=
0

; L
ED

N
u

m
er

ic
D

ri
ve

rL
ED

C
o

u
n

t
<

b
it

B
o

ar
d

[L
ED

N
u

m
er

ic
D

ri
ve

rP
it

C
o

u
n

t]
; L

ED
N

u
m

er
ic

D
ri

ve
rL

ED
C

o
u

n
t+

+)
{

P
O

R
TA

b
it

s.
A

N
0

 =
 1

;

D

el
ay

1
0

TC
Yx

(5
0

);

P
O

R
TA

b
it

s.
R

A
0

=
0

;

D

el
ay

1
0

TC
Yx

(7
5

);

}

}e
ls

e{

LE

D
Fr

am
eD

ri
ve

r(
te

n
sF

ra
m

e[
b

it
B

o
ar

d
[L

ED
N

u
m

er
ic

D
ri

ve
rP

it
C

o
u

n
t]

 /

1
0

]
|

u
n

it
sF

ra
m

e[
b

it
B

o
ar

d
[L

ED
N

u
m

er
ic

D
ri

ve
rP

it
C

o
u

n
t]

 %
 1

0
])

;

}

}

David Piggott - iBantumi

165

Game Logic Program Development
} vo

id

LE
D

Fr
am

eD
ri

ve
r(

sh
o

rt
 lo

n
g

fr
am

e)
{

//

Ta

ke
s

a
2

4
 b

it
 v

ar
ia

b
le

 (
sh

o
rt

 lo
n

g)
 w

h
er

e
e

ac
h

 b
it

//

co
rr

es
p

o
n

d
s

to
 a

 p
it

 L
ED

, a
n

d
 o

u
tp

u
ts

 t
h

em
 t

o
 t

h
e

//

p

it
 b

o
ar

d
s.

 T
h

e
p

it
 b

o
ar

d
s

ar
e

n
o

t
re

se
t

b
ef

o
re

 h
an

d
,

//

so

 w
h

ic
h

 L
ED

s
ar

e
sw

it
ch

ed
 d

ep
en

d
s

at
 w

h
at

 p
o

si
ti

o
n

 in

//

o

u
tp

u
t

fr
am

e
th

is
 is

 c
al

le
d

. f
ra

m
e

is
 r

ea
d

 f
ro

m
 r

ig
h

t

//

to
 le

ft
, s

o
 t

h
e

le
as

t
si

gn
if

ic
an

t
b

it
 is

 t
h

e
to

p
 le

ft

//

LE

D
.

in

t

LE

D
Fr

am
eD

ri
ve

rL
ED

C
o

u
n

t;

sh

o
rt

 lo
n

g
LE

D
Fr

am
eD

ri
ve

rB
it

M
as

k
=

0
b

0
00

0
0

0
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
1

;

fo
r(

LE
D

Fr
am

eD
ri

ve
rL

ED
C

o
u

n
t

=
 1

; L
ED

Fr
am

eD
ri

ve
rL

ED
C

o
u

n
t

<=
 2

4
; L

ED
Fr

am
e-

D
ri

ve
rL

ED
C

o
u

n
t+

+)
{

if
((

fr
am

e
&

 L
ED

Fr
am

eD
ri

ve
rB

it
M

as
k)

 !
=

0
){

P

O
R

TA
b

it
s.

A
N

0
 =

 1
;

D
el

ay
1

0
TC

Yx
(5

0
);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

D
el

ay
1

0
TC

Yx
(7

5
);

}e

ls
e{

P

O
R

TA
b

it
s.

A
N

0
 =

 1
;

D
el

ay
1

0
TC

Yx
(7

5
);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

D
el

ay
1

0
TC

Yx
(7

5
);

}

LE
D

Fr
am

eD
ri

ve
rB

it
M

as
k

=
LE

D
Fr

am
eD

ri
ve

rB
it

M
as

k
<<

 1
;

}

} ch
ar

m

o
ve

(v
o

id
){

if
(b

it
B

o
ar

d
[0

]
!=

 0
){

ac

ti
ve

P
it

++
;

if
(a

ct
iv

eP
it

 =
=

1
5

){

ac

ti
ve

P
it

 =
 1

;

}e
ls

e
if

(a
ct

iv
eP

it
 =

=
7

 &
&

 a
ct

iv
eP

la
ye

r
==

 1
){

ac
ti

ve
P

it
++

;

}e

ls
e

if
(a

ct
iv

eP
it

 =
=

1
4

 &
&

 a
ct

iv
eP

la
ye

r
==

 0
){

ac
ti

ve
P

it
 =

 1
;

}

b

it
B

o
ar

d
[a

ct
iv

eP
it

]+
+;

b

it
B

o
ar

d
[0

]-
-;

re

tu
rn

 1
;

}e

ls
e{

re

tu
rn

 0
;

}

} ch
ar

A

IM
o

ve
(v

o
id

){

David Piggott - iBantumi

166

Game Logic Program Development

if
(A

IS
im

[0
]

!=
 0

){

ac
ti

ve
P

it
++

;

if

(a
ct

iv
eP

it
 =

=
1

5
){

ac
ti

ve
P

it
 =

 1
;

}e

ls
e

if
(a

ct
iv

eP
it

 =
=

7
 &

&
 a

ct
iv

eP
la

ye
r

==
 1

){

ac

ti
ve

P
it

++
;

}e
ls

e
if

(a
ct

iv
eP

it
 =

=
1

4
 &

&
 a

ct
iv

eP
la

ye
r

==
 0

){

ac

ti
ve

P
it

 =
 1

;

}

A
IS

im
[a

ct
iv

eP
it

]+
+;

A

IS
im

[0
]-

-;

re
tu

rn
 1

;

}e
ls

e{

re
tu

rn
 0

;

}
} vo

id

w
in

n
er

(v
o

id
){

D
el

ay
1

0
K

TC
Yx

(0
);

ke
y

=
0

;

w
h

ile
(k

ey
 =

=
0

){

if
(b

it
B

o
ar

d
[7

]
>

b
it

B
o

ar
d

[1
4

])
{

P

O
R

TA
b

it
s.

R
A

0
=

1
;

D

el
ay

1
0

TC
Yx

(1
0

0
);

P
O

R
TA

b
it

s.
R

A
0

=
0

;

D
el

ay
1

0
TC

Yx
(2

5
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

p
ie

zo
D

ri
ve

r(
40

0
0

);

D

el
ay

1
0

K
TC

Yx
(5

0
);

P
O

R
TA

b
it

s.
R

A
0

=
1

;

D
el

ay
1

0
TC

Yx
(1

0
0

);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

D

el
ay

1
0

TC
Yx

(2
5

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

David Piggott - iBantumi

167

Game Logic Program Development

LE
D

Fr
am

eD
ri

ve
r(

0
b

10
1

0
1

01
0

1
0

1
0

1
0

1
0

1
0

10
1

0
1

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

p
ie

zo
D

ri
ve

r(
50

0
0

);

D

el
ay

1
0

K
TC

Yx
(5

0
);

}e

ls
e

if
(b

it
B

o
ar

d
[1

4
]

>
b

it
B

o
ar

d
[7

])
{

P

O
R

TA
b

it
s.

R
A

0
=

1
;

D

el
ay

1
0

TC
Yx

(1
0

0
);

P
O

R
TA

b
it

s.
R

A
0

=
0

;

D
el

ay
1

0
TC

Yx
(2

5
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

01
0

1
0

10
1

0
1

0
1

0
1

0
1

0
1

01
0

1
0

1
);

LE
D

Fr
am

eD
ri

ve
r(

0
b

00
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
);

p
ie

zo
D

ri
ve

r(
40

0
0

);

D

el
ay

1
0

K
TC

Yx
(5

0
);

P
O

R
TA

b
it

s.
R

A
0

=
1

;

D
el

ay
1

0
TC

Yx
(1

0
0

);

P

O
R

TA
b

it
s.

R
A

0
=

0
;

D

el
ay

1
0

TC
Yx

(2
5

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
10

1
0

1
01

0
1

0
1

0
1

0
1

0
1

0
10

1
0

1
0

);

LE

D
Fr

am
eD

ri
ve

r(
0

b
00

0
0

0
00

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

);

p

ie
zo

D
ri

ve
r(

50
0

0
);

David Piggott - iBantumi

168

Game Logic Program Development

D
el

ay
1

0
K

TC
Yx

(5
0

);

}

ke

y
=

ke
yD

ri
ve

r(
);

}
} vo

id

m
ai

n
(v

o
id

){

//

In
it

ia
lis

e
I/

O

LA

TA
 =

 0
;

LA

TB
 =

 0
;

LA

TB
 =

 0
;

A

D
C

O
N

1
=

0
b

00
0

0
0

1
1

0
;

TR

IS
A

 =
 0

b
00

0
0

0
0

0
0

;

TR
IS

B
 =

 0
b

00
0

1
0

1
1

0
;

TR

IS
C

 =
 0

b
00

0
0

1
1

1
1

;

//
O

p
en

U
A

R
T(

);

P

O
R

TB
b

it
s.

R
B

5
 =

 1
;

//

In
it

ia
lis

e
b

o
ar

d
 w

it
h

 t
w

o
 s

ee
d

s
p

er
 p

it
, e

xc
lu

d
in

g
m

an
ca

la

fo

r(
co

u
n

t
=

1
; c

o
u

n
t

<=
 1

4
; c

o
u

n
t+

+)
{

b
it

B
o

ar
d

[c
o

u
n

t]
 =

 2
;

}

A

IP
la

ye
r

=
0

;

b
it

B
o

ar
d

[7
]

=
0

;

b
it

B
o

ar
d

[1
4

]
=

0
;

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

ac

ti
ve

P
la

ye
r

=
0

;

//

B

eg
in

 g
am

ep
la

y

w
h

ile
(1

){

if
(a

ct
iv

eP
la

ye
r

==
 1

 &
&

 A
IP

la
ye

r
==

 1
){

D
el

ay
1

0
K

TC
Yx

(0
);

D
el

ay
1

0
K

TC
Yx

(0
);

p
ie

zo
D

ri
ve

r(
40

0
0

);

D

el
ay

1
0

K
TC

Yx
(2

5
);

p
ie

zo
D

ri
ve

r(
40

0
0

);

fo

r(
co

u
n

t
=

8
; c

o
u

n
t

<
1

4
; c

o
u

n
t+

+)
{

fo
r(

ar
ra

yC
o

p
yC

o
u

n
t

=
 0

; a
rr

ay
C

o
p

yC
o

u
n

t
<

 1
5

; a
rr

ay
C

o
p

y-
C

o
u

n
t+

+)
{

A

IS
im

[a
rr

ay
C

o
p

yC
o

u
n

t]
 =

 b
it

B
o

ar
d

[a
rr

ay
C

o
p

yC
o

u
n

t]
;

}

A

IS
im

[0
]

=
A

IS
im

[c
o

u
n

t]
;

A
IS

im
[c

o
u

n
t]

 =
 0

;

ac

ti
ve

P
it

 =
 c

o
u

n
t;

//

M

o
ve

 t
h

e
se

ed
s

w
h

ile
(A

IM
o

ve
()

){

}

//

W

as
 t

h
e

tu
rn

 e
lig

ab
le

 f
o

r
ca

p
tu

re

if
((

A
IS

im
[a

ct
iv

eP
it

]
==

 1
)

&
&

 (
8

<=
 a

ct
iv

eP
it

 &
&

 a
ct

iv
eP

it
 <

=
1

3
))

{

David Piggott - iBantumi

169

Game Logic Program Development

//

M
o

ve
 t

h
e

o
p

p
o

si
te

 s
ee

d
s

to
 t

h
e

ac
ti

ve
 p

la
ye

rs

m
an

ca
la

A
IS

im
[1

4
]

+=
 A

IS
im

[1
4

 -
 a

ct
iv

eP
it

];

A

IS
im

[1
4

 -
 a

ct
iv

eP
it

]
=

0
;

//

M

o
ve

 t
h

e
ca

p
tu

re
 t

ri
gg

er
 p

it
 s

ee
d

s
in

to
 t

h
e

m
an

-
ca

la

A

IS
im

[1
4

]
+=

 A
IS

im
[a

ct
iv

eP
it

];

A

IS
im

[a
ct

iv
eP

it
]

=
0

;

}

A
IR

es
u

lt
s[

co
u

n
t]

 =
 A

IS
im

[1
4

]
-

b
it

B
o

ar
d

[1
4

];

}

A

IG
ai

n
 =

 0
;

ke

y
=

1
3

;

fo
r(

co
u

n
t

=
8

; c
o

u
n

t
<

1
4

; c
o

u
n

t+
+)

{

if

(A
IR

es
u

lt
s[

co
u

n
t]

 >
 A

IG
ai

n
){

A
IG

ai
n

 =
 A

IR
es

u
lt

s[
co

u
n

t
-

8
];

ke
y

=
co

u
n

t;

}

}

b
it

B
o

ar
d

[0
]

=
b

it
B

o
ar

d
[k

ey
];

b
it

B
o

ar
d

[k
ey

]
=

0
;

ac

ti
ve

P
it

 =
 k

ey
;

//

M

o
ve

 t
h

e
se

ed
s

w

h
ile

(m
o

ve
()

){

D
el

ay
1

0
K

TC
Yx

(2
0

0
);

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p
ie

zo
D

ri
ve

r(
20

0
0

);

}

//

M

o
ve

 c
o

m
p

le
te

, e
va

lu
at

e
st

o
p

 c
o

n
d

it
io

n
s

//

W

as
 t

h
e

tu
rn

 e
lig

ab
le

 f
o

r
ca

p
tu

re

if

((
b

it
B

o
ar

d
[a

ct
iv

eP
it

]
==

 1
)

&
&

 (
8

 <
=

ac
ti

ve
P

it
 &

&
 a

ct
iv

eP
it

 <
=

1
3

))
{

//

M
o

ve
 t

h
e

o
p

p
o

si
te

 s
ee

d
s

to
 t

h
e

ac
ti

ve
 p

la
ye

rs
 m

an
ca

la

an
d

 u
p

d
at

e
th

e
b

o
ar

d

b
it

B
o

ar
d

[1
4

]
+=

 b
it

B
o

ar
d

[1
4

 -
 a

ct
iv

eP
it

];

b
it

B
o

ar
d

[1
4

 -
 a

ct
iv

eP
it

]
=

0
;

D
el

ay
1

0
K

TC
Yx

(2
0

0
);

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p
ie

zo
D

ri
ve

r(
30

0
0

);

//

M
o

ve
 t

h
e

ca
p

tu
re

 t
ri

gg
er

 p
it

 s
ee

d
s

in
to

 t
h

e
m

an
ca

la
 a

n
d

u

p
d

at
e

th
e

b
o

ar
d

b

it
B

o
ar

d
[1

4
]

+=
 b

it
B

o
ar

d
[a

ct
iv

eP
it

];

b
it

B
o

ar
d

[a
ct

iv
eP

it
]

=
0

;

D

el
ay

1
0

K
TC

Yx
(2

0
0

);

LE
D

N
u

m
er

ic
D

ri
ve

r(
);

p

ie
zo

D
ri

ve
r(

40
0

0
);

//

H

an
d

 p
la

y
o

ve
r

to
 t

h
e

o
p

p
o

si
ti

o
n

ac

ti
ve

P
la

ye
r

=
0

;

//

W

as
 t

h
e

la
st

 s
ee

d
 s

o
w

n
 in

to
 t

h
e

p
la

ye
r'

s
o

w
n

 m
an

ca
la

?

}e
ls

e
if

(a
ct

iv
eP

it
 =

=
1

4
){

//

G
ra

n
t

an
o

th
er

 m
o

ve

}e

ls
e{

David Piggott - iBantumi

170

Game Logic Program Development

//

H

an
d

 o
ve

r
p

la
y

to
 t

h
e

o
p

p
o

si
ti

o
n

ac

ti
ve

P
la

ye
r

=
0

;

}

}

ke
y

=
0

;

w

h
ile

(k
ey

 =
=

0
){

if
(P

O
R

TB
b

it
s.

R
B

1
 =

=
1

){

P
O

R
TB

b
it

s.
R

B
5

 =
 1

 -
 P

O
R

TB
b

it
s.

R
B

5
;

D
el

ay
1

0
K

TC
Yx

(0
);

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p
ie

zo
D

ri
ve

r(
20

0
0

);

}

if

(b
it

B
o

ar
d

[1
]+

b
it

B
o

ar
d

[2
]+

b
it

B
o

ar
d

[3
]+

b
it

B
o

ar
d

[4
]+

b
it

B
o

ar
d

[5
]

+b
it

B
o

ar
d

[6
]

==
 0

){

b
it

B
o

ar
d

[1
4

]
+=

 b
it

B
o

ar
d

[8
]+

b
it

B
o

ar
d

[9
]+

b
it

B
o

ar
d

[1
0

]+
b

it
B

o
ar

d
[1

1
]+

b
it

B
o

ar
d

[1
2

]+
b

it
B

o
ar

d
[1

3
];

b

it
B

o
ar

d
[8

]
=

0
;

b
it

B
o

ar
d

[9
]

=
0

;

b

it
B

o
ar

d
[1

0
]

=
0

;

b

it
B

o
ar

d
[1

1
]

=
0

;

b

it
B

o
ar

d
[1

2
]

=
0

;

b

it
B

o
ar

d
[1

3
]

=
0

;

w

in
n

er
()

;

}e
ls

e
if

(b
it

B
o

ar
d

[8
]+

b
it

B
o

ar
d

[9
]+

b
it

B
o

ar
d

[1
0

]+
b

it
B

o
ar

d
[1

1
]+

b
it

B
o

ar
d

[1
2

]+
b

it
B

o
ar

d
[1

3
]

==
 0

){

b
it

B
o

ar
d

[1
4

]
+=

 b
it

B
o

ar
d

[8
]+

b
it

B
o

ar
d

[9
]+

b
it

B
o

ar
d

[1
0

]+
b

it
B

o
ar

d
[1

1
]+

b
it

B
o

ar
d

[1
2

]+
b

it
B

o
ar

d
[1

3
];

b

it
B

o
ar

d
[8

]
=

0
;

b
it

B
o

ar
d

[9
]

=
0

;

b

it
B

o
ar

d
[1

0
]

=
0

;

b

it
B

o
ar

d
[1

1
]

=
0

;

b

it
B

o
ar

d
[1

2
]

=
0

;

b

it
B

o
ar

d
[1

3
]

=
0

;

w

in
n

er
()

;

}

ke
y

=
ke

yD
ri

ve
r(

);

if

(a
ct

iv
eP

la
ye

r
==

 1
 &

&
 A

IP
la

ye
r

==
 1

){

ke
y

=
3

0
;

}

}

if
(k

ey
 <

 2
0

){

A

IL
is

te
n

 =
 0

;

}

//

W

ai
t

fo
r

p
la

ye
r

to
 in

it
ia

lis
e

th
ei

r
m

o
ve

if

((
1

 <
=

ke
y

&
&

 k
ey

 <
=

6
 &

&
 a

ct
iv

eP
la

ye
r

==
 0

)
|

(8
 <

=
ke

y
&

&
 k

ey
 <

=
13

 &
&

ac

ti
ve

P
la

ye
r

==
 1

))
{

//

M
o

ve
 c

o
n

te
n

ts
 o

f
p

it
 in

to
 o

ff
 b

o
ar

d
 'h

an
d

'

b

it
B

o
ar

d
[0

]
=

b
it

B
o

ar
d

[k
ey

];

David Piggott - iBantumi

171

Game Logic Program Development

b

it
B

o
ar

d
[k

ey
]

=
0

;

ac

ti
ve

P
it

 =
 k

ey
;

//

M
o

ve
 t

h
e

se
ed

s

w

h
ile

(m
o

ve
()

){

D

el
ay

1
0

K
TC

Yx
(2

0
0

);

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p

ie
zo

D
ri

ve
r(

20
0

0
);

}

//

M
o

ve
 c

o
m

p
le

te
, e

va
lu

at
e

st
o

p
 c

o
n

d
it

io
n

s

//

W

as
 it

 p
la

ye
r

o
n

e'
s

tu
rn

 a
n

d
 w

as
 t

h
e

tu
rn

 e
lig

ab
le

 f
o

r
ca

p
tu

re

if
((

b
it

B
o

ar
d

[a
ct

iv
eP

it
]

==
 1

)
&

&
 (

ac
ti

ve
P

la
ye

r
==

 0
)

&
&

 (
1

 <
=

ac
ti

ve
P

it
 &

&
 a

ct
iv

eP
it

 <
=

6
))

{

//

M
o

ve
 t

h
e

o
p

p
o

si
te

 s
ee

d
s

to
 t

h
e

ac
ti

ve
 p

la
ye

rs

m
an

ca
la

 a
n

d
 u

p
d

at
e

th
e

b
o

ar
d

b
it

B
o

ar
d

[7
]

+=
 b

it
B

o
ar

d
[1

4
 -

 a
ct

iv
eP

it
];

b
it

B
o

ar
d

[1
4

 -
 a

ct
iv

eP
it

]
=

0
;

D

el
ay

1
0

K
TC

Yx
(2

0
0

);

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p

ie
zo

D
ri

ve
r(

30
0

0
);

//

M
o

ve
 t

h
e

ca
p

tu
re

 t
ri

gg
er

 p
it

 s
ee

d
s

in
to

 t
h

e
m

an
-

ca
la

 a
n

d
 u

p
d

at
e

th
e

b
o

ar
d

b
it

B
o

ar
d

[7
]

+=
 b

it
B

o
ar

d
[a

ct
iv

eP
it

];

b

it
B

o
ar

d
[a

ct
iv

eP
it

]
=

0
;

D

el
ay

1
0

K
TC

Yx
(2

0
0

);

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p

ie
zo

D
ri

ve
r(

40
0

0
);

//

H
an

d
 p

la
y

o
ve

r
to

 t
h

e
o

p
p

o
si

ti
o

n

ac

ti
ve

P
la

ye
r

=
1

 -
 a

ct
iv

eP
la

ye
r;

//

W

as
 it

 p
la

ye
r

tw
o

's
 t

u
rn

 a
n

d
 w

as
 t

h
e

tu
rn

 e
lig

ab
le

 f
o

r
ca

p
tu

re

}e
ls

e
if

((
b

it
B

o
ar

d
[a

ct
iv

eP
it

]
==

 1
)

&
&

 (
ac

ti
ve

P
la

ye
r

==
 1

)
&

&
 (

8

<=
 a

ct
iv

eP
it

 &
&

 a
ct

iv
eP

it
 <

=
1

3
))

{

//

M
o

ve
 t

h
e

o
p

p
o

si
te

 s
ee

d
s

to
 t

h
e

ac
ti

ve
 p

la
ye

rs

m
an

ca
la

 a
n

d
 u

p
d

at
e

th
e

b
o

ar
d

b
it

B
o

ar
d

[1
4

]
+=

 b
it

B
o

ar
d

[1
4

 -
 a

ct
iv

eP
it

];

b

it
B

o
ar

d
[1

4
 -

 a
ct

iv
eP

it
]

=
0

;

D
el

ay
1

0
K

TC
Yx

(2
0

0
);

LE
D

N
u

m
er

ic
D

ri
ve

r(
);

p
ie

zo
D

ri
ve

r(
30

0
0

);

//

M

o
ve

 t
h

e
ca

p
tu

re
 t

ri
gg

er
 p

it
 s

ee
d

s
in

to
 t

h
e

m
an

-
ca

la
 a

n
d

 u
p

d
at

e
th

e
b

o
ar

d

b

it
B

o
ar

d
[1

4
]

+=
 b

it
B

o
ar

d
[a

ct
iv

eP
it

];

b

it
B

o
ar

d
[a

ct
iv

eP
it

]
=

0
;

D

el
ay

1
0

K
TC

Yx
(2

0
0

);

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p

ie
zo

D
ri

ve
r(

40
0

0
);

//

H
an

d
 p

la
y

o
ve

r
to

 t
h

e
o

p
p

o
si

ti
o

n

ac

ti
ve

P
la

ye
r

=
1

 -
 a

ct
iv

eP
la

ye
r;

//

W
as

 t
h

e
la

st
 s

ee
d

 s
o

w
n

 in
to

 t
h

e
p

la
ye

r'
s

o
w

n
 m

an
-

ca
la

?

David Piggott - iBantumi

172

Game Logic Program Development

}e

ls
e

if
((

ac
ti

ve
P

it
 =

=
7

 &
&

 a
ct

iv
eP

la
ye

r
==

 0
)

|
(a

ct
iv

eP
it

 =
=

1
4

&

&
 a

ct
iv

eP
la

ye
r

==
 1

))
{

//

G
ra

n
t

an
o

th
er

 m
o

ve

}e
ls

e{

//

H

an
d

 o
ve

r
p

la
y

to
 t

h
e

o
p

p
o

si
ti

o
n

ac
ti

ve
P

la
ye

r
=

1
 -

 a
ct

iv
eP

la
ye

r;

}

}e

ls
e

if
(k

ey
 =

=
2

1
 &

&
 A

IL
is

te
n

 =
=

 0
){

//

R

es
ta

rt
 t

h
e

ga
m

e
w

it
h

 o
n

e
se

ed
s

p
er

 p
it

, e
xc

lu
d

in
g

m
an

-
ca

la

fo

r(
co

u
n

t
=

1
; c

o
u

n
t

<
1

5
; c

o
u

n
t+

+)
{

b
it

B
o

ar
d

[c
o

u
n

t]
 =

 2
;

}

A

IP
la

ye
r

=
0

;

b
it

B
o

ar
d

[7
]

=
0

;

b
it

B
o

ar
d

[1
4

]
=

0
;

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p

ie
zo

D
ri

ve
r(

20
0

0
);

ac
ti

ve
P

la
ye

r
=

0
;

A

IL
is

te
n

 =
 1

;

D
el

ay
1

0
K

TC
Yx

(1
0

0
);

}e

ls
e

if
(k

ey
 =

=
2

2
 &

&
 A

IL
is

te
n

 =
=

 0
){

//

R

es
ta

rt
 t

h
e

ga
m

e
w

it
h

 s
ee

d
s

p
er

 p
it

, e
xc

lu
d

in
g

m
an

ca
la

fo
r(

co
u

n
t

=
1

; c
o

u
n

t
<

1
5

; c
o

u
n

t+
+)

{

b

it
B

o
ar

d
[c

o
u

n
t]

 =
 3

;

}

A
IP

la
ye

r
=

0
;

b

it
B

o
ar

d
[7

]
=

0
;

b

it
B

o
ar

d
[1

4
]

=
0

;

LE
D

N
u

m
er

ic
D

ri
ve

r(
);

p
ie

zo
D

ri
ve

r(
20

0
0

);

ac

ti
ve

P
la

ye
r

=
0

;

A
IL

is
te

n
 =

 1
;

D

el
ay

1
0

K
TC

Yx
(1

0
0

);

}e
ls

e
if

(k
ey

 =
=

2
3

 &
&

 A
IL

is
te

n
 =

=
 0

){

//

R
es

ta
rt

 t
h

e
ga

m
e

w
it

h
 t

h
re

e
se

ed
s

p
er

 p
it

, e
xc

lu
d

in
g

m
an

ca
la

fo
r(

co
u

n
t

=
1

; c
o

u
n

t
<

1
5

; c
o

u
n

t+
+)

{

b

it
B

o
ar

d
[c

o
u

n
t]

 =
 4

;

}

A
IP

la
ye

r
=

0
;

b

it
B

o
ar

d
[7

]
=

0
;

b

it
B

o
ar

d
[1

4
]

=
0

;

LE
D

N
u

m
er

ic
D

ri
ve

r(
);

p
ie

zo
D

ri
ve

r(
20

0
0

);

ac

ti
ve

P
la

ye
r

=
0

;

A
IL

is
te

n
 =

 1
;

D

el
ay

1
0

K
TC

Yx
(1

0
0

);

}e
ls

e
if

(k
ey

 =
=

2
4

 &
&

 A
IL

is
te

n
 =

=
 0

){

//

R
es

ta
rt

 t
h

e
ga

m
e

w
it

h
 f

o
u

r
se

ed
s

p
er

 p
it

, e
xc

lu
d

in
g

m
an

-
ca

la

David Piggott - iBantumi

173

Game Logic Program Development

fo
r(

co
u

n
t

=
1

; c
o

u
n

t
<

1
5

; c
o

u
n

t+
+)

{

b

it
B

o
ar

d
[c

o
u

n
t]

 =
 5

;

}

A
IP

la
ye

r
=

0
;

b

it
B

o
ar

d
[7

]
=

0
;

b

it
B

o
ar

d
[1

4
]

=
0

;

LE
D

N
u

m
er

ic
D

ri
ve

r(
);

p
ie

zo
D

ri
ve

r(
20

0
0

);

ac

ti
ve

P
la

ye
r

=
0

;

A
IL

is
te

n
 =

 1
;

D

el
ay

1
0

K
TC

Yx
(1

0
0

);

}e
ls

e
if

(k
ey

 =
=

2
1

 &
&

 A
IL

is
te

n
 =

=
 1

){

//

R
es

ta
rt

 t
h

e
ga

m
e

w
it

h
 o

n
e

se
ed

s
p

er
 p

it
, e

xc
lu

d
in

g
m

an
-

ca
la

fo
r(

co
u

n
t

=
1

; c
o

u
n

t
<

1
5

; c
o

u
n

t+
+)

{

b

it
B

o
ar

d
[c

o
u

n
t]

 =
 2

;

}

A
IP

la
ye

r
=

1
;

b

it
B

o
ar

d
[7

]
=

0
;

b

it
B

o
ar

d
[1

4
]

=
0

;

LE
D

N
u

m
er

ic
D

ri
ve

r(
);

p
ie

zo
D

ri
ve

r(
20

0
0

);

ac

ti
ve

P
la

ye
r

=
0

;

A
IL

is
te

n
 =

 0
;

D

el
ay

1
0

K
TC

Yx
(1

0
0

);

}e
ls

e
if

(k
ey

 =
=

2
2

 &
&

 A
IL

is
te

n
 =

=
 1

){

//

R
es

ta
rt

 t
h

e
ga

m
e

w
it

h
 s

ee
d

s
p

er
 p

it
, e

xc
lu

d
in

g
m

an
ca

la

fo

r(
co

u
n

t
=

1
; c

o
u

n
t

<
1

5
; c

o
u

n
t+

+)
{

b
it

B
o

ar
d

[c
o

u
n

t]
 =

 3
;

}

A

IP
la

ye
r

=
1

;

b
it

B
o

ar
d

[7
]

=
0

;

b
it

B
o

ar
d

[1
4

]
=

0
;

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p

ie
zo

D
ri

ve
r(

20
0

0
);

ac
ti

ve
P

la
ye

r
=

0
;

A

IL
is

te
n

 =
 0

;

D
el

ay
1

0
K

TC
Yx

(1
0

0
);

}e

ls
e

if
(k

ey
 =

=
2

3
 &

&
 A

IL
is

te
n

 =
=

 1
){

//

R

es
ta

rt
 t

h
e

ga
m

e
w

it
h

 t
h

re
e

se
ed

s
p

er
 p

it
, e

xc
lu

d
in

g
m

an
ca

la

fo

r(
co

u
n

t
=

1
; c

o
u

n
t

<
1

5
; c

o
u

n
t+

+)
{

b
it

B
o

ar
d

[c
o

u
n

t]
 =

 4
;

}

A

IP
la

ye
r

=
1

;

b
it

B
o

ar
d

[7
]

=
0

;

b
it

B
o

ar
d

[1
4

]
=

0
;

LE

D
N

u
m

er
ic

D
ri

ve
r(

);

p

ie
zo

D
ri

ve
r(

20
0

0
);

ac
ti

ve
P

la
ye

r
=

0
;

A

IL
is

te
n

 =
 0

;

David Piggott - iBantumi

174

Game Logic Program Development

D
el

ay
1

0
K

TC
Yx

(1
0

0
);

}e

ls
e

if
(k

ey
 =

=
2

4
 &

&
 A

IL
is

te
n

 =
=

 1
){

//

R

es
ta

rt
 t

h
e

ga
m

e
w

it
h

 f
o

u
r

se
ed

s
p

er
 p

it
, e

xc
lu

d
in

g
m

an
-

ca
la

fo
r(

co
u

n
t

=
1

; c
o

u
n

t
<

1
5

; c
o

u
n

t+
+)

{

b

it
B

o
ar

d
[c

o
u

n
t]

 =
 5

;

}

A
IP

la
ye

r
=

1
;

b

it
B

o
ar

d
[7

]
=

0
;

b

it
B

o
ar

d
[1

4
]

=
0

;

LE
D

N
u

m
er

ic
D

ri
ve

r(
);

p
ie

zo
D

ri
ve

r(
20

0
0

);

ac

ti
ve

P
la

ye
r

=
0

;

A
IL

is
te

n
 =

 0
;

D

el
ay

1
0

K
TC

Yx
(1

0
0

);

}

}
}

David Piggott - iBantumi

175

In terms of gameplay, iBantumi has been through continual play testing from the moment that I got the first game logic proof of concept pro-
gramming. Fortunately I had no shortage of volunteers to play the game, and the testing proved very useful to identify flaws in the implemen-
tation of the game rules. For example, one area in which the implementation was initially incorrect was the way in which the rules of capture
were implemented; I had incorrectly programmed it so that if the last seed of a turn was sown to an empty pit belonging to the player who
started the turn, but the pit opposite it was empty (i.e. no seeds available for capture), capture would not take place (i.e. the last seed sown
by that player would remain in the pit, rather than being moved into the mancala). This turned out to be an incorrect implementation, despite
me having gone to extra effort to implement it, though on the plus side this meant it was simple enough to fix.

Other mistakes/design flaws that I noticed in testing are identified and detailed in the evaluation against specification included on previous
pages, and the “Negative points not covered by evaluation against specification” - one particular area of weakness being the power supply.
The testing which lead to my theory of the mechanism by which the red PORTC LEDs fail to light is described in the section “Pit Boards Smoke
Test”.

In terms of case testing, I have already identified strengths and weaknesses in the design and construction on the previous pages. However
one way by which I tested it has yet to be documented, and was not intentional. Several weeks ago, as I had just finished case construction, I
had taken iBantumi home to work on as usual. iBantumi was on my desk, and the wooden Bao board shown in figure 1.0 was on a bookshelf,
approximately one metre directly above iBantumi and next to a file - I was reaching up to get the file, and as I pulled it off the shelf, it caught
the wooden Bao board which was pulled off the shelf with it and fell directly onto iBantumi below. I estimate the mass of the Bao board to be
0.5kg, so it was no an insignificant momentum with which it collided with iBantumi, and despite this, iBantumi was completely unscathed by
the incident.

The second means by which it has been tested was when, in at attempt to remedy the downward bowing of the lower panel, I put several
large masses (two laptops, a Rapid catalogue, and several plastic trays) directly on top of the case. While this hasn’t fixed the downward bow-
ing of the lower panel, it did prove that the case is of more than sufficient strength and integrity to allow it to be handled by users without the
risk of it breaking.

Testing

David Piggott - iBantumi

176

Evaluation Against Specification
Below follows my original specification and my evaluation of each point.

Player Input - Specification Points
1. Each pit will have a push button switch, pressed by the player to initiate their move by taking the seeds from that pit into the hand.
2. There will be one LCD, shared between the two players, positioned at the end of the board such that it can be seen by both players.
3. The LCD menus will be controlled by four push button switches; two to change the selection, and two to cancel/confirm the selection.
4. This totals 12pit + 4menu = 16total switches, which can be arranged and scanned in a 4x4 array, such that only 8 I/O pins (one port) are re-

quired on the main controlling PICmicro.

Player Input - Evaluation
1. There is a push button switch for each pit. In terms of functionality they are ideal, being 12mm square provides plenty of surface area,

and as they are tactile the player receives feedback to confirm they have fully depressed the switch. The scanning of these switches,
which are connected in an array setup, is flawless and the end user would not be able to tell the difference between this setup and a
direct connection - the only situation in which problems might arise is if there were a requirement for several switches to be depressed
simultaneously - but as this is not required there is no problem. In terms of cost, all 16 cost £3.84 which is quite reasonable for a proto-
type.

2. There is one LCD shared between the two players and it is positioned at the end of the board. However this position is not optimal for
visibility to both players. It would be more easily visible if it was angled at approx 45 degrees as I had shown it on my initial casing ideas.
However I have two reasons for not having done this
a) the extra space required by the LCD module as a result of mounting it at 45 degrees would have either required the case to be sev-

eral centimetres taller, or would have required that the LCD protruded above the top of the case - but I had decided to avoid doing
this as it would be a liable to damage in this position.

b) b) as it was not possible to use CAMM to produce the upper panel for the case, this would have just meant introducing more com-
plexity to the case design when I had limited time in which to produce it and so could not afford to make mistakes.

3. Due to a combination of poor planning when creating the game logic artwork, a lack of information available from Microchip on the
software USART library functions, and the multiple week delay in programming caused by the failure of the original PIC18F252s I had to pro-

Evaluation

David Piggott - iBantumi

177

gram, I have been unable to control the LCD, despite maintaining the problem solving effort up until the deadline. However there is of coure
nothing wrong with the menu buttons and I have been able to develop a control system using these that works without the LCD, though it is
of course limited in terms of what can be done without graphical/textual information. Despite this, games can be started with a range of seed
quantities, and the option of human vs. human or huma vs. computer gameplay.
4. The switches are arranged in a 4x4 array and only one port is used for scanning them. This allowed a relatively small pincount on the PIC.

Case - Specification Points
1. The case will be based on case idea six.
2. The main material will be transparent acrylic. Some parts may be coloured translucent acrylic (e.g. red/blue for the mancala ends to in-

dicate possession of the seeds in that area by the player).
3. The on/off switch will be a slide switch mounted on the same side of the case as the LCD.

Case - Evaluation
1. The case is based on idea six, though the initial sketch was very open to interpretation. The key differences between the initial ideas was

the LCD quantity and placement, and the quantity and placement match those in idea six with the exception of the angle, already dis-
cussed on the previous page.

2. The entire construction is transparent acrylic. During the case design stages I considered the use of aluminium to create the side panels,
but decided that aesthetically this wouldn't be as good due to the aluminium tabs interfering with the clear view through the top panel.
Additionally, it would have been harder to work with and thus the finish would have been of lower quality than that which I have
achieved with acrylic. I decided not to use coloured acrylic for any parts because this inconsistency would have lowered the aesthetic
quality.

3. The on/off switch is not in fact a slide switch; instead, I opted for a push button switch simply for aesthetic reasons; I could not find any
slide switches that were consistent with the metal and plastic design of the case. It is however at the same end as the LCD, as are all I/O
functions, which helps keep the remaining three sides of the case uniform.

LED Control - Specification Points
1. The 336 seed LEDs will be grouped into arrays of 24 LEDs, and each group controlled by a 28 pin PICmicro, programmed with assembly

code, that I will refer to as LED registers.

Evaluation

David Piggott - iBantumi

178

2. Each LED will be connected directly to an output on an LED register.
3. The LED registers will be controlled by a serial pulse train from the main controlling PICmicro.
4. Therefore the LED registers will have a minimum of 25 I/O pins (24 output, 1 input for the serial pulse train).
5. The control protocol will be detailed in the development section, as and when I develop it.

LED Control - Evaluation
1. The 336 seed LEDs are grouped into arrays of 24 LEDs, and each group is controlled by a 28 pin PICmicro, programmed in assembly code.
2. Each LED is directly connected to an output on an LED register. This approach was successful with the blue LEDs but not for all the red

LEDs, as detailed in the section titled “Pit Boards Smoke Test”. The cause of this is of course because I didn’t put series current limiting
resistors in; it was desirable to avoid them at all costs as including them would have significantly increased the artwork sizes, such that
they wouldn’t even fit on A4 paper, and thus wouldn’t fit the exposure box, developer tray or etch tank, aswell as creating another 672
holes to drill and joints to solder.

However, I didn’t just decide to not include current limiting resistors without some calculation; the LEDs that I had selected following my
component research have a maximum current rating of 30mA, while the maximum current rating of the PIC16F882 pins is 25mA. From
my experience with PICs, I knew that the current would be limited by the maximum output of the PIC to 25mA - below that of the LEDs,
and thus that they would operate correctly without current limiting resistors.

While I am not entirely certain of the workings of the problem that exists with the red LEDs connected to PORTC pins, my theory is that
when the voltage across the PIC16F882s is high enough that even when the drop due to switching is taken into account, the p.d. across
the LEDs connected to PORTC is so high that the current passing through these LEDs is so high that a safety brown-out feature of PORTC
pins is triggered (I have not heard/read of one - this is merely speculation on my part) causing them to switch off.

This theory is consistent with the fact that if all 288 red and blue LEDs are switch on and left on for several minutes, the voltage regula-
tors temperatures increase such that their increased resistances cause a voltage drop that is sufficient to lower the p.d. across the
PORTC LEDs by enough that the current flowing in them no longer triggers this safety brown-out.

Evaluation

David Piggott - iBantumi

179

It is also consistent with the fact that when all 288 red and blue LEDs are switched on the red PORTC LEDs can be seen momentarily
pulsing on before switching off, and with the fact that when the voltage regulators have warmed up enough, they do not spontaneously
switch on; a new packet must be transmitted to the pit registers reinstructing them to switch on. A possible explanation for why this
doesn’t occur with red PORTA or PORTB LEDs is that the brown-out level of these is different. The reason the problem doesn’t occur
with blue PORTC LEDs is that the blue LEDs have a higher resistance and so draw less current for a given p.d.
With hindsight, it wouldn’t actually have been that much extra work to include current limiting resistors, as they wouldn’t have needed
to be on the PCBs themselves; I could have used them in place of the ribbon cable interlinking the boards. This would of course have re-
quired large amounts of heatshrink in order to insulate between them, and would have introduced the risk of ’dead pixels’ by means of
metal fatigue in the resistors causing them to break. However the effect of the red PORTC LEDs not working was not so bad that I
deemed retro-fitting current limiting resistors worth the time it would have taken (probably a whole week), as it would have delayed
other crucial parts of the project.

3. The LED registers are controlled by a serial pulse train from the main controlling PICmicro, and despite being asynchronous I have yet to
 observe a single transmission error; that is to say, the pulse lengths I chose are not too short or too similar, while still allowing a mini
 mum frame rate of 29Hz!
4. The LED registers have 25 I/O pins (24 output, 1 input for the serial transmission).
5. The control protocol is detailed in the development section, and I believe it is the simplest and most efficient protocol possible to
 achieve what it does; efficient in terms of the amount of useful data transmitted compared with the total information transmitted, and
 simple in that it is relatively easy to understand the protocol itself.

Processing - Specification Points
1. The rules described in the following section (gameplay) will be applied by a single PICmicro, programmed using C.
2. One output pin will be required for the piezo sounder.
3. One input pin will be required for the on/off switch.
4. Eight I/O (four input, four output) will be required for the push button switches.
5. One output pin will be required for transmitting the serial pulse train to the LED registers.
6. One to eight output pins will be required for controlling the LCD, depending on how I choose to drive it (whether the driver is controlled

by serial or parallel signalling).

Evaluation

David Piggott - iBantumi

180

7. Therefore a maximum of (1 + 1 + 8 + 1 + 8) = 19 I/O pins will be required on the controlling PICmicro.

Processing - Evaluation
1. While the rules of the game are correctly applied by the game logic controller, because the program was only finalised in the 24 hours

leading up to the deadline (see section titled “Time Usage & Unfortunate Circumstances”), I not satisfied with the program in terms of
readability and modularity; it was very much a mad panic. If it weren’t for the PIC18F252s failing to program in the Easter holidays, it is
likely that I would have been able to get the LCD menus working, along with a more advanced and challenging AI player, and I would
have been able to take my time when programming to ensure maximum modularity and readability.

2. One output is used for the piezo sounder.
3. One input is used for the on/off button.
4. Eight I/O are used for the pit buttons and menu buttons.
5. One output pin is used for transmitting the serial pulse train to the LED registers. However an additional output pin is used to control

the relay that controls power to the pit boards.
6. I had planned to use two pins to control the serial LCD module - one for the serial transmission, and one to actually power the module,

as the datasheet for it stated a current draw of less than 5mA. The reason for doing this, rather than having it permanently connected to
+5V was because of the software power management; when in standby it is desirable to minimise power consumption in order to maxi-
mise battery life. However, when I tried testing the LCD in clock mode (to isolate other causes) via the PIC18F252, it simple didn’t func-
tion, and the p.d. measured across it was 0v leading me to suspect the output pin of the PIC18F252 was browning out as with the red
PORTC LEDs on the register PICs. Fortunately however, the track that went to this pin was only 0.254cm from a +5V track so I was able
to bridge the gap with solder, and set the tristage bit for that pin to 1 - high impedance (input). This solved the power issue and the LCD
powered up correctly.

7. 13 I/O pins are used on the PIC18F252.

Gameplay - Specification Points
1. The objective is to have the most seeds in your mancala at the end of play.
2. There will be six pits per player.
3. There will be one mancala per player, situated to the right of their six pits.

Evaluation

David Piggott - iBantumi

181

4. Gameplay will start with two seeds in each pit.
5. A turn consists of one or more moves.
6. Whether another move is granted depends on the outcome of the previous move.
7. A move starts when a player takes the seeds from one pit into the hand (by pressing the switch located in that pit).
8. The seeds are then sown anticlockwise one at a time around the board.
9. Seeds cannot be moved from the mancala.
10. If when a move terminates, the last seed in the hand was sown into the player’s mancala, the player is granted (and is obliged to take)

another move.
11. If when a move terminates, the last seed in the hand was sown into a pit directly opposing an occupied opponents pit, the seeds in that

pit and the opponents pit are moved at once into the mancala of the player who initiated the move.
12. The game terminates when either player has no seeds left in play, and the winner is the player with the most seeds on their side of the

board.

Gameplay - Evaluation
1. The rules of the game are applied correctly at all points in the game. I have exceeded the specification in this area, as the game doesn’t

have to start with two seeds; three, four or five are also available.

Extra Features - Specification Points
 The AI player implementation is subject to be having the time and knowledge/ability to do so.
 I may also add, accessible via the LCD menu, some “Easter eggs”; i.e. the ability to strobe all the LEDs for use as a floodlight type device.

Extra Features - Evaluation
1. As I wrote the final program within the last 24 hours leading up to the deadline, I had considerably less time available for this; neverthe-

less, I wanted to give it a go and so despite not having LCD menus to access it by, I came up with the double button tap method, and cre-
ated a very very basic computer player - considering I wrote and debugged this in about two hours, I am very pleased with it.

2. As I was unable to get the serial control of the LCD working, there are of course no LCD menus and so no way to make these ‘Easter
eggs’ available. However, the presence or lack of such features is insignificant in the greater scheme of things.

Evaluation

David Piggott - iBantumi

182

Negative points not covered by evaluation against specification
The power supply and management is an area of the project that I seriously overlooked, and this has caused several problems. The problems
can be summarised as follows:
 High running temperature of pit board voltage regulators due to lack of heatsinks (by chance this is beneficial as it allows the red PORTC

LEDs to work once the regulators warm up and voltage drop is sufficient).
 Design fault with LCD power supply required modification of PCB and resulted in increased standby current.
 Generally high standby current results in very short battery life.
 Use of relay to control power to pit boards increases operating current to be higher than necessary.
 Excessive use of bridge rectifiers to protect against reverse polarity was unnecessary and leads to inefficiency due to the voltage drop

across them.
 Insufficient planning of connection of batteries results in them being used to power the board even when external power supply is con-

nected as they are connected in parallel and there the batteries are not disconnected, mechanically or electronically when external
power is connected. This means that battery run time decreases even running from external power.

 I had to add an inline diode in one wire from the batteries in order to prevent the power supply from charging them (not desirable with
non-rechargeables!) as I had failed to realise this would occur when creating the game logic artwork.

In retrospect a simpler and superior power system would have been to have only a 6V rail throughout the product, with no bridge rectifiers or
diodes losing energy, and no voltage regulators. It would be powered by a 6V DC PSU and 6V battery (4x AA cells). Because there would be no
power processing (bridge rectifiers or voltage regulators) on the pit boards, a relay would no longer be necessary for controlling the pitboards
(it was only required as they are bipolar if used in a DPDT setup) and instead I could have used a MOSFET - smaller, more reliable, silent,
cleaner (less noise), and without the requirement of a Darlington driver. The small voltage drop across it would not matter as it would simply
bring the p.d. across the pit boards closer to 5V.

A system would be required that would switch to the external power supply when present and back to batteries when removed. The simplest
way of doing this would be to take advantage of the third connection on the DC power socket I used that acts as a normally closed switch,
opening when the power jack is inserted. A large capacitor on the game logic board would maintain sufficient voltage across the game logic

Evaluation

David Piggott - iBantumi

183

PIC to avoid a reset during the transition. However, one drawback of this would be that if the power jack were present but it wasn’t plugged
into the mains, there would be no power at all and so reset would occur. An alternative system would be one in which a relay was used con-
trolling which power supply is selected (batteries or external) with the default position being batteries; the external power supply would be
connected to the relay coil so that when external power is connected, the relay would switch to disconnect the batteries and connect external
power. However a drawback of this system would be the current drawn by the relay coil, which would reduce standby and running times -
perhaps a similar system could be implemented using one or more MOSFETs.

LCD
This too is a significant failing of the project, which cannot be attributed to any specific fault but is better described as a series of unfortunate
events; it started when I created the game logic artworks and failed to consider that the PIC18F252 has built in hardware USART and I2C con-
trollers; had I realised at the time, I would have tracked the LCD to one of these. However, being preoccupied with other more urgent prob-
lems at the time, I overlooked this and tracked it to a standard I/O pin, intended to research how to actually control the LCD later on. When I
did, I realised I would have been better off using hardware USART/I2C, but also found that there is a software UART implementation in the
C18 code libraries. However, in order to use these library functions I had to define a delay function (as this is dependent on the required baud
and the oscillator frequency of the microcontroller). Having done this and recompiled the library, the LCD didn’t work; for example sending a
‘a’ character to it would result in a ‘p’ showing on the LCD, or sending a ‘b’ would results in a ‘_’. Having tried everything I could, and unable to
find assistance with the issue, with only twelve hours left until the deadline I decided my time would be better spent on other things. I believe
the root of the issue was either poor synchronisation between the PIC18F252 and serial driver, or incorrect timing.

While I am happy with the case design (with the exception of the LCD position as already described), the problem of not being able to fit the
panels in the CAMM machine and me subsequently having to produce everything by hand, combined with the tight timescale has resulted in
some noticeable inaccuracies, for example:
 Dents on the edge of one end of the lower panel, created when it was bandsawn and overlooked by me during filing and polishing (I did

manage to remove them from all other edges though).
 Inconsistency of dimensions and angles of the edges of the tabs joining side panels to upper panels.
 Inaccuracy in position of holes for LCD result in it not being aligned with the menu buttons or edges of the upper panel.

Evaluation

David Piggott - iBantumi

184

 Inaccuracy in position of holes for pit board standoffs results in tension in the upper pit board which results in the case being bowed
downwards in the centre.

 Inaccuracy in cutting of upper panel has resulted in it not being square with the lower panel, and as a result neither are the side panels
(relative to the lower panel) as they are attached squarely to the upper panel.

 Lack of support by means of standoffs in the centres of the pit boards has resulted in them being very flexible and liable to displacement
when central pit buttons are depressed.

Positive points not covered by evaluation against specification
Positive points not covered by the evaluation of the specification are generally concerning the project as opposed to the product. While I have
been able to identify various areas of weakness in the product, it is important not to forget that it was an ambitious project to take on.

On the whole I consider the project a great success; the majority of my work has been outside of the A2 syllabus and so not only have I had to
do a lot of development work, but I had to teach myself to program in both PIC assembly and C, as well as identify and familiarise myself with
Microchip’s development systems - MPLAB IDE and the PICKit 2. This I succeeded in doing, and so was able to successfully develop register
code for the PIC16F882s in PIC assembly and game logic code for the PIC18F252 in C.

While I do not consider myself to have mastered either language by means (I did not expect to - the project was not merely about program-
ming - there were also large amounts of circuit and case development and production, and I was doing it along side two other A-Levels), I do
not consider this a failing. I am happy to have introduced myself to the languages and gained some experience with them, particularly assem-
bly code because it is such a low level language (I had already used languages with similar syntax to C prior to the project).

Another merit of the project is that part way through development, I realised that a lot of development tasks depended on others in a nearly
circular fashion, so I had to revise my strategy and take the only, albeit risky, option of producing artworks and PCBs having done next to no
breadboarding. This was most risky for the pit boards due to the amount of work involved in producing them and yet by means of stringent
error checking and an entirely theoretical (various artworks designed but no PCBs produced initially) evolutionary process, I was able to create
a design that worked first time, albeit it with minor issues such as the red PORTC LEDs already mentioned (this wasn’t detected when I created

Evaluation

David Piggott - iBantumi

185

the initial register prototype board because I didn’t populate it with red LEDs on PORTC). The same was not true of the game logic board de-
velopment, which had to go through a practical evolutionary process but this was not a problem as it has a much smaller component count.
Although not an achievement in terms of ingenuity, actually producing and populating pit boards with 336 LEDs was quite satisfying, albeit a
lot of work.

A final strength of the project, and something I am very pleased with is the compactness of the case that I was able to achieve by exact model-
ling of all components in ProDESKTOP. This allowed me to maximise use of free space inside the case while ensuring no physical interference
between components.

Evaluation

David Piggott - iBantumi

186

Industrial Practices, Social Issues, Systems & Control

Before considering how my product would be produced commercially, it is important to first of all consider the feasibility of the design for
mass production. As I have only produced a prototype, I didn’t have to consider this, which has resulted in a fairly expensive product in terms
of component cost and the time taken for me to manufacture it. The most outstanding materials costs are the LEDs, PIC16F882s, and serial
LCD module. The cost of the serial LCD module could be reduced significantly by replacing it with a parallel driven LCD (a large part of the
price on serial LCD modules is the serial controller PIC and associated circuitry, as well as the royalty on the program that runs on it). This
leaves the cost of the LEDs and PIC16F822s outstanding, which as parts of the system are tied closely to each other.

The pitboards are not only expensive in terms of money, but also assembly time and the space required in the case. The best way of decreas-
ing all these expenses would be to completely redesign them as multi-layer boards (this would reduce materials costs, space required, and
assembly time), and replace the LEDs and PICs with surface mount devices (including surface mount current limiting resistors) - again reducing
materials costs, space required, and assembly time, when considered in the context of mass production. The LEDs would be on the upper side
of the board, and the PICs on the lower side. Because this would allow the boards to be smaller, and because the size wouldn’t be limited like
it was with the PCB production equipment at school, both player one and player two pit boards could be produced as one board.

In fact, the game logic board could also be merged with the pit boards so that the entire design would consist of a single multi-layer PCB. Be-
cause the product would no longer be a prototype, the ICSP programming connectivity could be removed from the PCB and case, simplifying
the design, reducing component costs, and saving space. Additionally, the vandal resistant power button is one component of disproportion-
ate cost, and this would be replaced with a simple slide switch of similar style to the hold switches found on MP3 players - which is appropri-
ate because it’s function would be similar - disabling the pit and menu buttons, to prevent accidental input, but also switching off the pit-
boards to save power.

Because the power supply would be completely redesigned based on my ideas described in the evaluation (6V supply throughout, with solid
state intelligent switching - i.e. no relays), only 4x AA batteries would be required and so only one battery box would be needed in the case -
again reducing costs, assembly time, and space required. This wouldn’t impact on the battery life at all - infact, it would be increased due to
the far superior power supply and management design, as well as the reduced current drawn by surface mount LEDs.

David Piggott - iBantumi

187

Industrial Practices, Social Issues, Systems & Control

The case itself too would have to be reconsidered - while producing the panels with CAMM would be cheaper and quicker per unit than
manually producing them with a hegner saw etc. it would be cheaper and quicker still to produce the case by either injection moulding it, in
two halves - upper and lower, because the unit cost savings would far outweigh the higher initial investment in production setup.

Combining all these improvements, approximate dimensions of 10cm width x 25cm length x 3cm thickness are not unreasonable estimates -
with the most significant occupier of space now being the single 4xAA battery box. Similarly, component costs would be significantly reduced,
especially when purchased in bulk.

With the alterations of the design to make it more suitable for mass production now discussed, I can consider how it would actually be manu-
factured. If my product were to be produced commercially, I would expect numerically controlled drills to be used for the drilling of holes/vias
in PCBs prior to the lamination stage where they are bonded together to form the multilayer PCBs. Pick and place robots would be used to
populate the boards. These processes are beneficial when compared with the manual production methods I used for the prototype because
they are automated processes and therefore carried out quicker and more accurately than human workers could, as well as being more reli-
able and not requiring pay. I would expect either reflow or wave soldering to be used for populating the boards. All processing components as
well as the LEDs would be surface mount devices, while I/O such as the power supply, battery, menu/pit switches and LCD, being separate
from the board, would be connected by through hole joints.

From an environmental and business point of view, it makes sense to use copper islands on the artwork. This is because they reduce the
amount of copper to be etched, thus reducing etching chemical bills and increasing profits as well as reducing harmful wastes in the form of
strong acids and alkalis. The use of CNC/robots is a double edged sword; while it is beneficial in that it reduces materials wastage due to failed
products, it does also lower the amount of jobs created by the manufacturing operation.

With regard to quality of the final product, I would build quality assurance into the production of the games, by continuing with the tech-
niques I used for the prototype – weaving holes for all flying components and heat-shrink on all bare joints. I would also conduct quality con-
trol. This would mean that all PCBs would be tested before being mounted in the cases and random samples of the completed products would
be tested both for electrical functionality and defects in the casing (e.g. cracks/scratches/warping/discolouration etc.).

David Piggott - iBantumi

188

Industrial Practices, Social Issues, Systems & Control

As already stated, the case design would be altered to be a compact inject moulded construction in two parts - which would be assembled
with the PCB and periphery components by hand.

I used CAD throughout the project – examples of CAD are Livewire used in the creation of schematics, PCB Wizard for the creation of art-
works, MPLAB IDE for the development, testing and debugging of programs written in PIC assembly and C and ProDESKTOP for the design of
the case. The advantages of CAD are that designs can be easily handled - for example, transferred by e-mail. Parts of the design stage can be
automated, for example by the use of pattern commands for populating virtual PCBs with LEDs, and in the event that the design is updated or
a new product revision is created, this can be accommodated by the CAMM manufacturing processes without changing equipment.

My product is a prototype, and with further development could be produced on a commercial scale.

David Piggott - iBantumi

189

Bibliography & Conclusion

Resources used
 ’PIC in Practice’ (D.W. Smith 2002) - This introduced me to the general approaches used in writing programs with assembly code.
 www.cprogramming.com - This served as a reference for some C specific features such as pointers, as well as providing more informa-

tion on function and variable declarations, as well as arrays.
 Wikipedia - This I used for information on industrial PCB production for the previous section.
 Microchip user forums - while I never created an account there, I was able to search the forums and find solutions for one or two of the

more common problems that I had.
 Microchip online technical support centre - I created three support requests here, all of which are described in the relevant sections of

this documentation.
 Microchip online datasheets - See appendix C.

Conclusion
On the whole I have really enjoyed the project, in particular the programming stages. It has been a great learning experience - prior to under-
taking it I had never programmed in PIC assembly or C.

David Piggott - iBantumi

190

Appendix A (Rough Notes)

Throughout the project I have endeavoured to keep all rough notes together. They are included in this appendix.

David Piggott - iBantumi

191

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

192

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

193

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

194

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

195

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

196

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

197

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

198

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

199

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

200

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

201

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

202

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

203

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

204

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

205

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

206

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

207

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

208

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

209

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

210

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

211

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

212

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

213

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

214

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

215

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

216

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

217

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

218

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

219

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

220

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

221

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

222

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

223

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

224

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

225

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

226

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

227

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

228

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

229

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

230

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

231

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

232

APPENDIX A CONTENT
ROUGH NOTES

David Piggott - iBantumi

233

Appendix B

This appendix contains the following work done on my initial project idea, an electronic Bao board:
 Board Diagram
 Objective, Rules & Terms
 Preliminary Ideas & Analysis

In addition it contains work that I did towards the LED Register development that later proved useless (as the frequency of transmission I am
using for the LED register control protocol is too high for the pulses to be distinguishable via standard PC sound equipment because the sam-
pling rate is limited to 44,100Hz which is a time period of 22.6µs - when the smallest time period that would need to measured in my control
protocol is 25µs - too close to the limit of resolution for it to have been of use:
 Use of laptop as an oscilloscope via the soundcard and the Audacity audio capture and editing program

David Piggott - iBantumi

234

Appendix B

Bao (Board Diagram)

David Piggott - iBantumi

235

Appendix B

Terms
Pits - The hollows in the board in which seeds are placed (there are sixteen per player in Bao).
Seeds - The pieces that the game are played with. In Bao, the game starts with two seeds per pit.
Rows - A row of pits. Each player has a front and back row. There are different rules for the front and back rows.

Objective
The aim of the game is to either empty the opponents front row or deprive them of any legal moves. This is achieved in accordance with the
rules outlined below.

Rules
A players turn may consist of one or more moves. The following rules describe how to move the seeds:
1. At the start of a turn the player chooses a pit and direction.
2. The seeds from the pit are then taken into the hand and sowed around the board in the direction chosen, placing one seed in each pit

passed until there are no seeds left in the hand. This sowing follows a loop that passes through the active player’s front and back row.
Seeds are never sown into the opponents pits.

3. If the last seed of a hand lands in a front row pit with one or more seeds already in, the contents (if any) of the corresponding pit in the
opponents front row are taken, and sown starting from the end of the front row in the direction that play started in for that turn. If tak-
ing was a result of ending with the last seed of the hand in a reversal zone, the direction of play is first of all reversed.

4. If the last seed of a hand lands in any pit with one or more seeds already in it, the contents of that pit are then taken into the hand and
another move follows, governed by these same rules. The direction of play is the same as that for the first move.

5. If the last seed of a hand lands in an empty pit, this is the end of the players turn.
6. Players can only take opponent’s seeds in subsequent moves if they did so in the first move of the current turn.
7. The contents of a pit can only be played if there are two or more seeds in it.

David Piggott - iBantumi

236

The idea of the electronic version is to make the game quicker to play once the player has decided the pit and direction to start their turn is.
This is possible because these are the only two variables that determine the outcome of a turn, and in Bao, turns can take literally hours/days
given the correct starting conditions, as the sowing process just keeps on going. Therefore I decided that the functioning of the game would
be as follows:
 Each pit has two backlit push button switches, one initiating clockwise play and the other anticlockwise play. The backlit is lit if is legal to

move the seeds in that pit; if not legal, it is not lit. This helps the player more quickly analyse their options.
 Once the button has been pressed, the board will execute their move for them, though not instantaneously; there would be pauses be-

tween sowing each seed to allow the players to watch the move take place.

There are three main aspects of the system that need careful consideration:
 Input (telling it what you want to move and where)
 Output (showing how many seeds in each store)
 Processing (applying the rules of the game to the instructions given by the player, and moving the ’pieces’ appropriately)

Input
As already stated, I planned to have two buttons per pit; this is a total of 4 x 8 x 2 = 64 switches (excluding auxiliaries, e.g. a ‘New game’ but-
ton). With so many switches, and given that simultaneous depressions are not necessary, the most obvious way of achieving connection of
these to the microcontroller that applies the rules of the game is by some form of array scanning; with 64 switches, this could be achieved
with 8 rows and 8 columns, which would require exactly 2 ports (one port = 8 bits) on a PICmicro.

Output
As the board consists of 32 pits, and each starts with 2 seeds, there are a total of 64 seeds on the board. Although all the seeds will never be in
one single pit (the game would end before this), the maximum number that can be in a single pit is going to be close to 64 and therefore in
solving the output problem, I have allowed for 64 seeds per pit.

Appendix B

David Piggott - iBantumi

237

There are a variety of output methods I could use for this, such as:
 7-Seg displays
 LCD display
 LEDs
The problem with both 7-Seg displays and LCDs is that because they display textual representation of a number, they must be read the correct
way up, and therefore I would require four 7-Seg displays per pit (two for tens and units, but doubled because I would need a pair pointing at
each player). I haven’t considered LCDs any further because, as with 7-Seg displays, they take away the quality of representation provided by
LEDs; an array of LEDs, one per seed, gives a very quick graphical representation of the number of seeds in the pit.

Allowing for 64 seeds per pit and 32 pits, this is 32 x 64 = 2048 LEDs. Slightly concerned that this would be prohibitively expensive and time
consuming to implement, I sought another solution; binary. Rather than having one LED for every seed that could be in a pit, I instead decided
to represent the number in binary.

Since log264 = 6, a range of 64 seeds could be represented with only six LEDs per pit. That is up to 63 seeds (allowing for the display of zero
seeds). Six LEDs per pit x 32 pits = 192 LEDs, a much more manageable number.

Unfortunately, doing it this way loses the quality of representation provided by using one LED per seed, though it does at least avoid the prob-
lem of opposing players having to read upside down (as there is no reading to be done). It also introduces another problem; players would
need to be able to read, at a glance, a number from binary into decimal.

I decided that I could consider this a feature/twist of the electronic version, and continued developing my ideas. It was when I had just about
finished these ideas, and was ready to begin formal documentation that I suddenly remembered the Bantumi mancala variant I mentioned in
the project outline.

Though I had developed my ideas for this Bao variant to a fairly high level of detail, I have not formally documented them here because I no
longer intend to produce such a game. For the purposes of completeness though I included them in this appendix.

Appendix B

David Piggott - iBantumi

238

Appendix B

 While waiting for my order for a PICkit 2 programmer to come
through, I started thinking about how I would go about developing
the LED registers & control protocol.

Because the whole thing centres around a serial pulse train, it will
be very important during development that I am able to easily see
the waveform that is outputted by the controlling PICmicro. In or-
der to this, I will need some form of oscilloscope. However, rather
than borrowing a bulky CRO from the Physics department, I had
the idea of using my the sound card on my laptop to do this, using
an open source audio editing program called ‘Audacity’. This will
offer several advantages over a CRO:
 Will allow saving of traces, and post-examination
 Will allow reproduction of recorded traces (by clicking play!)
 Will allow construction of traces in software, and output via

soundcard (rather than implementing a program in assembly
code to do this)

 Since it’s the same laptop I’m using for this documentation, I
will not require any extra equipment

 Will allow me to insert traces directly into this documenta-
tion via print screen, rather than having to take a picture of a
CRO screen!

With the benefits quite clear, I decided to start preparing and testing this technique ready for when the programmer arrives and I start pro-
gramming. In order to interface a circuit on breadboard with the line-in of my laptop, I needed to know what the nominal line-level voltage is.
I found this on the Wikipedia pages (http://en.wikipedia.org/wiki/Line_level and http://en.wikipedia.org/Nominal_level). In order to test it, I
of course needed a sample input.

Audacity receiving input from a 555 timer astable

David Piggott - iBantumi

239

Appendix B

 The input I chose to use as a means of testing this system was a 555 timer astable, using two 1kΩ resistors and a 1μF capacitor. Using the for-
mula:

This value matches with the difference on
the time axis between two wavefronts on
the Audacity waveform; it is only important
that the timing is accurate for what I need.

I am therefore happy with this setup and
conclude that it will be a very useful tool
when I am developing the LED register pro-
tocol.

Audacity receiving input from a 555 timer astable

David Piggott - iBantumi

240

Appendix C

 This appendix contains all datasheets that I read and use during the project. All but one (the PICAXE serial LCD module) are from Microchip,
for Microchip products. The datasheets are listed in the following table:

As can be seen there is a significant volume. Because I read so many different areas of them, it would be a unfeasible for me to select only
those parts which I used for inclusion, and even if I did, I estimate this would still be several hundred pages worth. For this reason, I am only
including two pages here - the pin diagrams for the PIC16F882 and PIC18F252. There are many other pages that were of great importance to
me, but these two are those that I expect will of most use to the reader of this documentation.

For the sake of completeness, I have however included each datasheet on a CD which is included on the next page, along with all other files
associated with the project (artworks, schematics, case design, program source code etc.).

Datasheet Pages

C18 Getting Started 128

C18 Libraries 184

C18 User Guide 136

LCD Serial Driver 17

MPLAB Getting Started 44

MPLAB Quick Chart 8

MPLAB User Guide 288

PIC16F882 Datasheet 288

PIC18F252 Datasheet 332

PICkit 2 User Guide 58

Total: 1483

David Piggott - iBantumi

241

Appendix C

APPENDIX C CONTENT
ROUGH NOTES

David Piggott - iBantumi

242

Appendix C

APPENDIX C CONTENT
ROUGH NOTES

David Piggott - iBantumi

243

Appendix C

Placeholder for project files CD

